Optimization of loading conditions on Capto adhere using design of experiments

Intellectual Property Notice: The Biopharma business of GE Healthcare was acquired by Danaher on 31 March 2020 and now operates under the Cytiva™ brand. Certain collateral materials (such as application notes, scientific posters, and white papers) were created prior to the Danaher acquisition and contain various GE owned trademarks and font designs. In order to maintain the familiarity of those materials for long-serving customers and to preserve the integrity of those scientific documents, those GE owned trademarks and font designs remain in place, it being specifically acknowledged by Danaher and the Cytiva business that GE owns such GE trademarks and font designs.
Optimization of loading conditions on Capto adhere using design of experiments

Summary
Capto™ adhere is a strong ion exchanger with multimodal functionality designed for intermediate purification and polishing of monoclonal antibodies. Removal of remaining contaminants is achieved in flowthrough mode under conditions that allow the antibodies to pass directly through the column while the contaminants are adsorbed.

This Application Note describes the optimization of the loading conditions to obtain the window of operation for Capto adhere. In order to find the optimal conditions, a full factorial design of experiment (DoE) was used with three variables: pH, conductivity, and load. The implications of each result are discussed and general trends for how pH, conductivity, and sample load affect yield and purity are outlined.

The results demonstrate that it is possible to find a wide window of operation in terms of pH and conductivity.

Introduction
Capto adhere is a multimodal ion exchanger designed for intermediate purification and polishing of monoclonal antibodies (MAbs) after a capture step on Protein A medium (Fig 1).

The multimodal functionality gives a different selectivity compared to traditional anion exchangers. Removal of leached protein A, antibody dimers and aggregates, host cell proteins (HCP), viruses, and nucleic acids can be performed in flowthrough mode where the antibodies pass directly through the column while the contaminants are adsorbed. Capto adhere improves yield, productivity, and process economy with:

- High capacity and productivity
- Contaminant removal to formulation levels in one step
- Wider operational window of pH and conductivity
- Savings in time and operating costs with a two step chromatographic process

As a member of the BioProcess™ media family, Capto adhere meets the demands of industrial biotechnology with validated manufacturing methods, security of supply, and comprehensive regulatory support to assist process development, validation, and submission to regulatory authorities.
Design of experiments (DoE) – basic principles

DoE is a systematic approach to investigate how variations in factors (X’s) affect the responses (Y’s) in a system (e.g., determining the mathematical relationship between X and Y). DoE is used to plan experiments so that the maximum amount of information can be extracted from the performed experiments. The factors in a DoE study are simultaneously varied so that they are independent of each other in a statistical sense. This makes it possible to evaluate the effect on the response of each factor separately (main effects). In addition, interaction effects between factors can be evaluated. For optimizing purposes, the use of DoE greatly increases the likelihood that the real optimum for a response is found.

A commonly used type of DoE is full factorial design, which is used both for screening and optimization purposes. A great advantage with the full factorial design is that all main effects and interaction effects are independent of each other and therefore their effect on the response can be resolved in the evaluation. A disadvantage with the full factorial design is that the number of experiments increases as the number of factors studied increases - the number of experiments is 2^n where n is the number of factors. A full factorial design with seven factors would need $2^7 = 256$ experiments. When many factors are included in the design, there are other types of DoE that can be used, which will significantly reduce the number of experiments, with the trade-off that some information is lost.

Center points are important for the DoE. The center point is usually replicated and will give information on the variation in the responses. The center points will also provide information on possible curvature in the data.

Method design and optimization

Balancing product yield against product purity is the major consideration when optimizing a method. When running in flowthrough mode, loading conditions will usually be a compromise between conditions favoring yield and conditions favoring contaminant clearance. By adjusting pH and conductivity of the sample as well as the sample load, conditions can be obtained where most contaminants are adsorbed while the monomeric antibodies pass through the column. Optimization of loading conditions is preferably performed by using DoE. A common approach in DoE is to define a reference experiment (center point) and perform representative experiments around that point. To be able to define the center point and the variable ranges, some initial experiments are required.

Establish non-binding conditions

To find conditions suitable for the DoE, initial experiments can be performed in binding mode, using a pH gradient for elution (Fig 2). The elution position (i.e., pH at peak maximum) defines the lower pH in the design. The upper pH in the design should normally be about two pH units higher. Experiments can also be performed in flowthrough mode, keeping the conductivity constant at a moderate level. A comparison of chromatograms is shown in Figure 3. At high pH (i.e., close to pI for the antibodies) the breakthrough during sample load is delayed, the breakthrough and wash curves are shallow, and significant amounts of MAb binds to the adsorbent. A decrease in pH (i.e., further from pI) results in weaker electrostatic interaction between the antibodies and the adsorbent, steeper breakthrough and wash curves, and increased yield.
In the DoE, pH, conductivity, and load must be included. It is important to include conditions at the higher pH range resulting in lower yield and higher purity, as well as conditions at lower pH range resulting in higher yield and lower purity.

Setup of a full factorial DoE with three parameters

Below is a stepwise description of how to set up a full factorial design.

1. **Work prior to actual setup of the design**
 Perform initial loading experiments at varying pH, as described above. Choose parameters to include and define parameter ranges and responses.

2. **Choose design for screening or optimization**
 Full factorial design is commonly used in both screening and optimization. A full factorial DoE in three parameters will give $2^3 = 8$ experiments + center points. A graphical view of how the experiments are organized is shown in Figure 4.

3. **Choose center points for the design**
 Center points are important in DoE because they give an indication if there is curvature in the data. Replicated center points are recommended. For example, a full factorial design in three parameters with three center points gives a total of 11 experiments.

4. **Systematic variation of the parameters**
 Limiting values, high and low, should be used for each parameter. The high and low values should be combined in a way that makes the parameters independent (to be able to separate effects).

DoE used for purification of an IgG$_1$ MAb

DoE was applied for the optimization of loading conditions for an antibody, previously purified on non-agarose based rProtein A chromatographic medium. The experiments were designed and evaluated using Umetrics Modde™ 7.0 software (www.umetrics.com).

The feed contains a monoclonal IgG$_1$ expressed in CHO cell supernatant with pI about 9. The impurity levels after Protein A were determined: leached protein A 36 ppm; dimers and aggregates 3.3%, and HCP 210 ppm. The experimental setup was a full factorial design with three variables: load, pH (based on Figs 2 and 3), and conductivity, with additional points to resolve curvature effects (Table 1). In total, 14 experiments were included in the model, and the measured responses were yield and concentration of impurities (Protein A (ppm), dimers and aggregates (%), and HCP (ppm)) in the flowthrough pool. For each response a separate model was calculated. The models were fitted to MLR (multiple linear regression) and are well explained and show good stability to cross validation. Response surfaces were obtained for yield as well as for clearance of key contaminants.

Table 1. Design setup, includes two center points (bold) and four additional points at pH 7 to resolve curvature effects

<table>
<thead>
<tr>
<th>Load (mg mAb/ml)</th>
<th>pH</th>
<th>Cond (mS/cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>300</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>75</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>300</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>75</td>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td>300</td>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td>75</td>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td>300</td>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td>187.5</td>
<td>7</td>
<td>8.5</td>
</tr>
<tr>
<td>187.5</td>
<td>7</td>
<td>8.5</td>
</tr>
<tr>
<td>75</td>
<td>7</td>
<td>15</td>
</tr>
<tr>
<td>300</td>
<td>7</td>
<td>15</td>
</tr>
<tr>
<td>187.5</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>187.5</td>
<td>7</td>
<td>15</td>
</tr>
</tbody>
</table>

Fig 4. Graphical representation of a full factorial design in three variables with center points.
Results

Parameters affecting the yield

The parameters that affect the yield are shown in the coefficient plot (Fig 5). The plot shows that high sample load, low pH, and high conductivity result in high yield. The interaction effects (load × pH, load × conductivity) are also significant for the yield response. The response surfaces (Fig 6) show that higher loads will give a larger pH window with yield > 90%.

1 The coefficient plot describes the impact of investigated parameters on the yield. In this experiment, load is positively correlated to the yield, implying that a higher load will give a higher yield; pH is negatively correlated to the yield, meaning that a lower pH will give a higher yield, and conductivity is positively correlated to yield, but to a smaller extent, meaning that a higher conductivity will give higher yield.

The interaction effects that are present in the coefficient plot (load × pH, load × conductivity) mean that if pH is changed, the yield will not only change with the effect of pH but also with the effect of load at that specific pH. The same discussion can be applied to the load × conductivity interaction effect.

Parameters affecting the Protein A clearance

The coefficient plot shows that a high pH will give good Protein A clearance (Fig 7). The conductivity alone does not affect the response, but there is a significant interaction effect for pH × conductivity. If this term is high, the Protein A clearance will be low. Load was not a significant factor for this response.

The response surfaces (Fig 8) show that high pH and low conductivity will give high Protein A clearance.

Fig 5. Coefficient plot for the yield model.

Fig 7. Coefficient plot for the Protein A clearance model.

Fig 8. Response surfaces for the Protein A clearance model, conductivity versus pH. Protein A concentration expressed in ppm.

Fig 6. Response surfaces for the yield model. Load versus pH at different conductivities, with yield expressed in percent (labels).
Parameters affecting dimers and aggregates clearance

The coefficient plot shows that pH is the most important parameter and that high pH will give a high dimers and aggregates clearance in the flowthrough pool (Fig 9). The load parameter is also significant, but very small. The load should be low to give high dimers and aggregates clearance. There is a significant curvature effect assigned to pH. If pH is too high or too low, the aggregates clearance will be less efficient. The conductivity did not significantly affect dimers and aggregates clearance.

The response curve (Fig 10) shows that the load has only a small effect on aggregates clearance, so only pH needs to be considered.

Fig 9. Coefficient plot for the dimers and aggregates clearance model.

Fig 10. Response curve for the dimers and aggregates clearance model, load versus pH. Dimers and aggregates concentration expressed in percent.

Parameters affecting host cell protein (HCP) clearance

The coefficient plot (Fig 11) and response curves (Fig 12) show that low sample load, low conductivity, and high pH will give the best HCP clearance.

Fig 11. Coefficient plot for the HCP clearance model.

Fig 12. Response surfaces for the HCP clearance model, conductivity versus pH at different loads. HCP concentration is expressed in ppm.
Conclusions - optimal loading conditions and general trends

Each monoclonal antibody is unique and the level of contaminants varies between different cell lines and differences in previous purification steps. This implies that it may be difficult to predict optimal loading conditions. However, based on design of experiments performed with several different antibodies, some general trends have been identified (Fig 13).

- For best yield load should be high, the pH low, and conductivity high.
- For the best dimers and aggregates clearance, the pH should be high, while load and conductivity should be low. Dimers and aggregates clearance is typically less affected by conductivity than Protein A and HCP clearance.
- For the best Protein A and HCP clearance, the pH should be high and conductivity low.

Loading conditions will therefore be a compromise between conditions favoring yield and conditions favoring contaminant clearance. Optimal loading conditions will be a balance between load, pH, and conductivity. Consequently, for optimization of the loading step, all three parameters should be varied in the same experimental series.

Optimal loading conditions for five MAbs together with yield and contaminant clearance results from two step process, including protein A medium and Capto adhere, are shown in Table 2. pH should normally be well below the isoelectric point, while optimal conductivity is harder to predict. The response surfaces above show the influence of sample load, pH, and conductivity on four different responses (yield of monomeric MAb and clearance of Protein A, dimers and aggregates, and HCP, respectively), and how to reach desired values for each of them. Even though the optimal conditions for each response are not the same, there is a large area where acceptable values can be obtained for all four responses. Suggested loading conditions for this MAb when purified with Capto adhere are a sample load of 200 mg/ml, pH 7, and conductivity 8.5 mS/cm. The expected outcome would be a yield of over 90%, leached Protein A below the detection limit, dimers and aggregates < 0.5%, and HCP concentration of < 15 ppm.

![Fig 13. General trends with respect to loading conditions for yield, dimers and aggregates, and Protein A and HCP clearance.](image)

<table>
<thead>
<tr>
<th>MAb</th>
<th>pl</th>
<th>pH</th>
<th>Conductivity (mS/cm)</th>
<th>Yield %</th>
<th>D/A %</th>
<th>Protein A ppm</th>
<th>HCP ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>~9</td>
<td>7</td>
<td>8</td>
<td>90</td>
<td>0.5</td>
<td>n.q.</td>
<td>< 15</td>
</tr>
<tr>
<td>2</td>
<td>8.3 to 8.9</td>
<td>5.5</td>
<td>3</td>
<td>95</td>
<td>0.6</td>
<td>n.q.</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>7.5 to 8.4</td>
<td>6</td>
<td>2</td>
<td>95</td>
<td>0.8</td>
<td>n.q.</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>7.7 to 8.0</td>
<td>7</td>
<td>20</td>
<td>91</td>
<td>0.2</td>
<td>n.q.</td>
<td>30</td>
</tr>
<tr>
<td>5</td>
<td>6.5 to 9.0</td>
<td>7.5</td>
<td>20</td>
<td>92</td>
<td>< 0.1</td>
<td>n.q.</td>
<td>7.5</td>
</tr>
</tbody>
</table>
GE, imagination at work and GE Monogram are trademarks of General Electric Company.

ÄKTAexplorer, BioProcess, Capto, and Tricorn are trademarks of GE Healthcare companies.

Separating viral particles with Capto Q chromatography media may require a license under United States Patent 6,537,793 B2 and foreign equivalents owned by Centelion SAS.

The Tricorn column and components are protected by US design patents USD500856, USD506261, USD500555, USD495060 and their equivalents in other countries.

All third party trademarks are the property of their respective owners.

© 2007 General Electric Company – All rights reserved.

First published Jan. 2007

All goods and services are sold subject to the terms and conditions of sale of the company within GE Healthcare which supplies them. A copy of these terms and conditions is available on request. Contact your local GE Healthcare representative for the most current information.

GE Healthcare Europe GmbH
Munzinger Strasse 5, D-79111 Freiburg, Germany

GE Healthcare UK Ltd
Amersham Place, Little Chalfont, Buckinghamshire, HP7 9HA, UK

GE Healthcare Bio-Sciences Corp
800 Centennial Avenue, P.O. Box 1327, Piscataway, NJ 08855-1327, USA

GE Healthcare Bio-Sciences KK
Sanken Bldg. 3-25-1, Hiyakumicho, Shinjuku-ku, Tokyo 169-0073, Japan

Asia Pacific T +85 65 62751830 F +85 65 62751829 • Australia T +61 2 8820 8299 F +61 2 8820 8200 • Austria T +43 1 972 72 70 F +43 1 972 72 75 • Belgium T +32 800 70000 F +32 800 70001 • Brazil T +55 11 3933 7360 F +55 11 3933 7361 • Canada T 1 800 463 5800 F 1 800 567 1008 • Central & East Europe T +43 1 852 1 00 F +43 1 852 1 01 • China T +86 10 8647 0079 F +86 10 8647 0079 • Denmark T +45 70 24 40 F +45 70 24 41 • Finland T +358 9 512 6040 F +358 9 512 6041 • France T +33 1 45 23 45 00 F +33 1 45 23 45 01 • Germany T 0800 9000 900 F 0800 9000 901 • Ireland T +353 1 601 1000 F +353 1 601 1001 • Italy T +39 02 4884 000 F +39 02 4884 001 • Japan T 03 3331 9336 F 03 3331 9370 • Korea T 82 2 6201 3700 F 82 2 6201 3800 • Latin America T +55 11 3933 7360 F +55 11 3933 7361 • Netherlands T 0800 82 82 82 F 0800 82 82 82 • Norway T +47 8155 7777 F +47 8155 4444 • Portugal T +351 21 417 7035 F +351 21 417 3164 • Russia, CIS & NIS T +7 495 956 5177 F +7 495 956 5176 • Spain T +34 91 552 7777 F +34 91 552 7776 • Sweden T +46 8 123 456 F 08 123 4567 • Switzerland T 064 8828 69 F 0844 8828 11 • UK T 0800 505 305 F 0800 616 927 • USA T +1 800 567 3593 F +1 877 239 8102