

Purification of MBP-tagged proteins using new prepacked columns

Intellectual Property Notice: The Biopharma business of GE Healthcare was acquired by Danaher on 31 March 2020 and now operates under the Cytiva™ brand. Certain collateral materials (such as application notes, scientific posters, and white papers) were created prior to the Danaher acquisition and contain various GE owned trademarks and font designs. In order to maintain the familiarity of those materials for long-serving customers and to preserve the integrity of those scientific documents, those GE owned trademarks and font designs remain in place, it being specifically acknowledged by Danaher and the Cytiva business that GE owns such GE trademarks and font designs.

cytiva.com

GE and the GE Monogram are trademarks of General Electric Company. Other trademarks listed as being owned by General Electric Company contained in materials that pre-date the Danaher acquisition and relate to products within Cytiva's portfolio are now trademarks of Global Life Sciences Solutions USA LLC or an affiliate doing business as Cytiva.

Cytiva and the Drop logo are trademarks of Global Life Sciences IP Holdco LLC or an affiliate. All other third-party trademarks are the property of their respective owners. © 2020 Cytiva

All goods and services are sold subject to the terms and conditions of sale of the supplying company operating within the Cytiva business. A copy of those terms and conditions is available on request. Contact your local Cytiva representative for the most current information.

For local office contact information, visit $\underline{\text{cytiva.com/contact}}$

Purification of MBP-tagged proteins using new prepacked columns

A. Bergh¹, K. Busson¹, M. Carlsson¹, A. Heijbel¹, A. Karlsson¹, J. Lundqvist¹, E. M. Maier², R. Zimmerman³, J. Zou¹

- ¹ GE Healthcare Bio-Sciences AB, SE-751 84 Uppsala, Sweden
- ² Dr. von Haunersches Kinderspital, 80337 Munich, Germany
- ³ Leiden University, 2333CC Leiden, The Netherlands

Background

Maltose binding protein (MBP) is beneficial as an affinity tag due to its ability to increase expression level and solubility of the fusion protein. The new MBPTrap HP 1 ml and 5 ml columns have been specially developed for high specificity towards the MBP-tag and the prepacked format facilitate fast and convenient purification. The small bead size of the medium, Dextrin Sepharose High Performance (34 μ m), allows elution in narrow peaks minimizing the need for further concentration steps.

MBPTrap HP characteristics

Column dimensions: $0.7 \times 2.5 \text{ cm (1 ml)}$ and

1.6 x 2.5 cm (5 ml)

Bed volume: 1 ml or 5 ml

Medium: Dextrin Sepharose High Performance

Dynamic binding capacity: Approx. 10 mg MBP-tagged protein/ml

medium (protein dependent)

Recommended flow rate: 1 and 5 ml/min for 1 and 5 ml

columns, respectively

Maximum flow rate: 4 and 20 ml/min for 1 and 5 ml

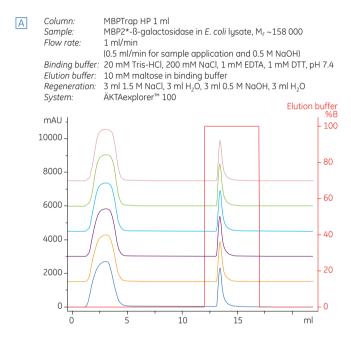
columns, respectively

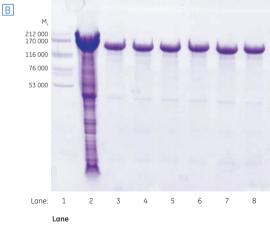
pH working range: > pH 7

Storage: 4°C to 8°C in 20% ethanol

MBPTrap HP 1 ml and 5 ml columns quickly and conveniently purify MBP-tagged recombinant proteins to high purities in concentrated forms and small volumes

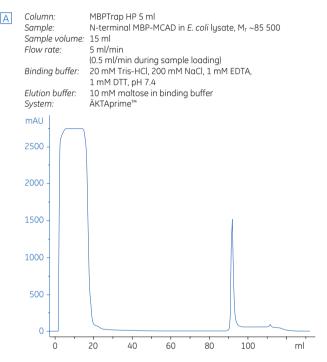
Conclusions


MBPTrap HP provides the following benefits:


- High final purity due to the specificity towards the MRP-tag
- High reproducibility regarding purity and yield for repeated runs on the same column including regeneration between the runs
- Reduced total purification time due to elution of highly concentrated target protein eliminating the need for an extra concentration step
- Convenient prepacked format used in combination with different ÄKTAdesign™ systems

Effective regeneration

The regeneration of MBPTrap HP is easily performed using sodium hydroxide. Six consecutive purifications of MBP2*-B-galactosidase in E. coli lusate were performed on the same column with regeneration between each run with no reduction in purity or yield (Fig 1). The load was 3.6 ma MBP2*-\(\beta\)-aglactosidase and the final puritu was above 95% according to SDS-PAGE (Fig 1 B). The yield was approximately 2.5 mg (70%) for all six runs. This shows the high reproducibility during repeated use of MBPTrap HP in combination with regeneration with 0.5 M NaOH.



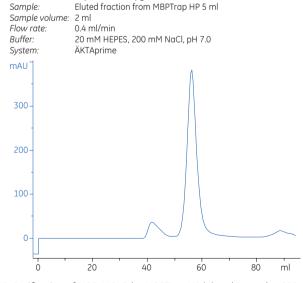
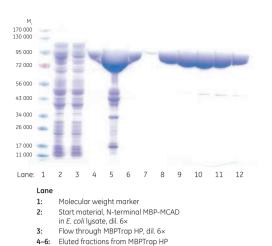

- 1: High molecular weight marker, HMW
- 2: Start material, MBP2*-ß-galactosidase in E coli lysate
- 3: Run 1, eluted pool
- 4. Run 2 eluted pool
- 5: Run 3, eluted pool
- 6: Run 4, eluted pool
- 7: Run 5, eluted pool
- 8: Run 6, eluted pool

Fig 1. Repeated purification and regeneration on the same MBPTrap HP column. Absorbance curves at 280 nm (A) and SDS-PAGE analysis (Coomassie™ stained, reduced conditions) (B) of eluted pools from six purification runs

Simplified purification of a protein involved in metabolic disease

Using the MBPTrap HP column eliminated a concentration step in a purification procedure for medium-chain acul-CoA dehydrogenase (MCAD). This homotetramer, which is involved in metabolic disease, was purified for stability, folding and kinetic studies. MBPTrap HP replaced the earlier affinity purification step. The highly concentrated target protein was eluted from the MBPTrap HP column in a small volume (Fig 2A). Consequently, the former concentration step prior to final gel filtration could be avoided and significant time saved.



Superdex[™] 200 pg in XK 16/20

Column:

Fig 2. Purification of MBP-MCAD by MBPTrap HP (A) and Superdex 200 pg in XK 16/20 (B). Absorbance curves at 280 nm.

7-12: Eluted fractions from gel filtration

Fig 3. SDS-PAGE analysis (Coomassie stained, reduced conditions) of fractions from purification of MBP-MCAD.

The purity of the eluted fractions from MBPTrap HP and gel filtration was determined by SDS-PAGE analysis (Fig 3). As well as the target protein, some additional proteins were detected after the affinity step. This may be due to the presence of truncated variants still having the N-terminal MBP-tag intact, or possibly *E. coli* proteins associated with the target protein (this was not evaluated further). Final purity after gel filtration was high (greater than 95%) according to SDS-PAGE analysis. Final yield was approximately 8.4 mg. As well as cutting total purification time and eliminating the concentration step, the recovery of target protein was also increased due to fewer purification steps.

Automated two-step purification using ÄKTAxpress

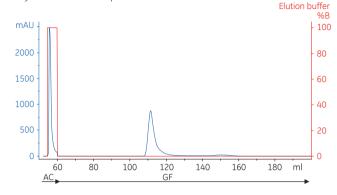
A two-step purification procedure was used to purify MBP-tagged Apoptin protein, M, ~60 000. The protein was intended for crystallization screening and functional studies. The purification was performed using ÄKTAxpress™ and an affinity (AC) - gel filtration (GF) protocol (Fig 4). Columns used were MBPTrap HP (AC) and HiLoad™ 16/60 Superdex 200 pg (GF). The eluted peak from MBPTrap HP was automatically collected in a loop and injected to the gel filtration column. The position of the fractions from the gel filtration indicated a molecular weight of approximately 120 kDa, while analysis by SDS-PAGE under reduced conditions detected proteins with a molecular weight of 60 kDa (Fig 5). The discrepancy in molecular weight might be due to the presence of dimeric Apoptin or possibly chaperones in the eluted pool. According to literature, the E. coli chaperone GroEL, $M_r \sim 60000$, may be associated and co-purified with MBP (Kiser et al. Acta Cryst., 2007). By using an antibody against GroEL, the presence of GroEL in the eluted fractions was confirmed by Western blot (data not shown).

AC-column: MBPTrap HP 5 ml

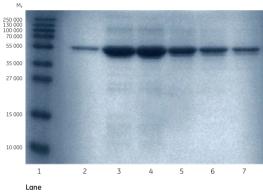
Sample: MBP-Apoptin in E. coli lysate, M_r ~60 000

Sample volume: 15 ml Flow rate: 5 ml/min

Binding buffer: 20 mM Tris-HCl, 200 mM NaCl, 1 mM EDTA, 1 mM DTT, pH 7.4


Elution buffer: 10 mM maltose in binding buffer

GF-column: HiLoad 16/60 Superdex 200 pg
Sample: Collected pool from MBPTrap HP


Sample volume: 2 ml Flow rate: 0.3 ml/min

Buffer: 10 mM sodium phosphate, 140 mM NaCl, 0.5 M EDTA, pH 7.2

System: ÄKTAxpress

Fig 4. Automated two-step purification of MBP-Apoptin by MBPTrap HP (AC) and HiLoad 16/60 Superdex 200 pg (GF).

Molecular weight marker
 Eluted fractions from gel filtration

Fig 5. SDS-PAGE analysis (Coomassie stained, reduced conditions) of fractions from the gel filtration step.

For contact information for your local office, please visit, www.gelifesciences.com/contact

www.gelifesciences.com/hitrap www.gelifesciences.com/protein-purification

GE Healthcare Bio-Sciences AB Björkgatan 30 751 84 Uppsala Sweden

GE, imagination at work, and GE monogram are trademarks of General Electric Company. ÄKTAexplorer, ÄKTAdesign, ÄKTAprime, ÄKTAxpress, HiLoad, MBPTrap, Sepharose, and Superdex are trademarks of GE Healthcare companies.

All third party trademarks are the property of their respective owners.

© 2007 General Electric Company – All rights reserved. First published Oct. 2007.

All goods and services are sold subject to the terms and conditions of sale of the company within GE Healthcare which supplies them. A copy of these terms and conditions is available on request. Contact your local GE Healthcare representative for the most current information

GE Healthcare Limited, Amersham Place, Little Chalfont, Buckinghamshire, HP7 9NA, UK

GE Healthcare Bio-Sciences Corp., 800 Centennial Avenue, P.O. Box 1327, Piscataway, NJ 08855-1327, USA

GE Healthcare Europe GmbH, Munzinger Strasse 5, D-79111 Freiburg, Germany GE Healthcare Bio-Sciences KK, Sanken Bldg., 3-25-1, Hyakunincho, Shinjuku-ku, Tokyo, 169-0073 Japan