

# Simple immunoprecipitation of phosphorylated proteins from pervanadate stimulated CHO cells using paramagnetic beads

**Intellectual Property Notice:** Part of GE Healthcare's Life Sciences business was acquired by Danaher on 31 March 2020 and now operates under the Cytiva™ brand. Certain collateral materials (such as application notes, scientific posters, and white papers) were created prior to the Danaher acquisition and contain various GE owned trademarks and font designs. In order to maintain the familiarity of those materials for long-serving customers and to preserve the integrity of those scientific documents, those GE owned trademarks and font designs remain in place, it being specifically acknowledged by Danaher and the Cytiva business that GE owns such GE trademarks and font designs.

**cytiva.com**

GE and the GE Monogram are trademarks of General Electric Company. Other trademarks listed as being owned by General Electric Company contained in materials that pre-date the Danaher acquisition and relate to products within Cytiva's portfolio are now trademarks of Global Life Sciences Solutions USA LLC or an affiliate doing business as Cytiva. Cytiva and the Drop logo are trademarks of Global Life Sciences IP Holdco LLC or an affiliate. All other third-party trademarks are the property of their respective owners. © 2020 Cytiva. All goods and services are sold subject to the terms and conditions of sale of the supplying company operating within the Cytiva business. A copy of those terms and conditions is available on request. Contact your local Cytiva representative for the most current information. For local office contact information, visit [cytiva.com/contact](http://cytiva.com/contact)

CY16334-08Sep20-PT

# Simple immunoprecipitation of phosphorylated proteins from pervanadate stimulated CHO cells using paramagnetic beads

Gabriella Risberg, Marika Sjödahl, Nils Norrman, Gunnar Glad, Helena Hedlund, Johan Öhman

GE Healthcare Bio-Sciences AB, Björkgatan 30, SE-751 84 Uppsala, Sweden

## Background

Fundamental cellular functions such as cell signalling are commonly regulated by phosphorylation of tyrosine residues in proteins (pTyr). When dysregulated they often play a prominent role in human cancer making the development of methods studying and identifying tyrosine phosphorylated proteins extremely important.

pTyr proteins are comparatively rare and difficult to measure. Threonine and serine phosphorylation constitute of 10 respectively 90 % of the total human phosphorylation, while the tyrosine phosphorylation only represent 0.05 %.

Phosphorylation of tyrosine residues in proteins is due to the activity of both tyrosine kinases and phosphotyrosine phosphatases. Specific phosphatase inhibitors such as vanadate and pervanadate are therefore useful tools in the study of tyrosine phosphorylation.

We have studied the effect of tyrosine phosphorylation of proteins in CHO cells after treatment with pervanadate, (generated by vanadate peroxidation in the presence of  $H_2O_2$ ). A preparation method using immunoprecipitation with anti-phosphotyrosine (anti-pTyr) antibodies, cross-linked to Protein G Mag Sepharose™ magnetic beads (GEHC, Sweden) followed by nanoLC MS/MS mass spectrometry analysis has been developed.

By using a small amount of magnetic beads with highly selective antibodies, both enrichment and concentration of phosphorylated proteins is achieved resulting in an increased sensitivity and efficiency during MS analysis (fig. 1).

The binding capacity of the magnetic beads has been adjusted to reach a balance between the capacity and the amount of antibodies needed for a typical Immunoprecipitation experiment.

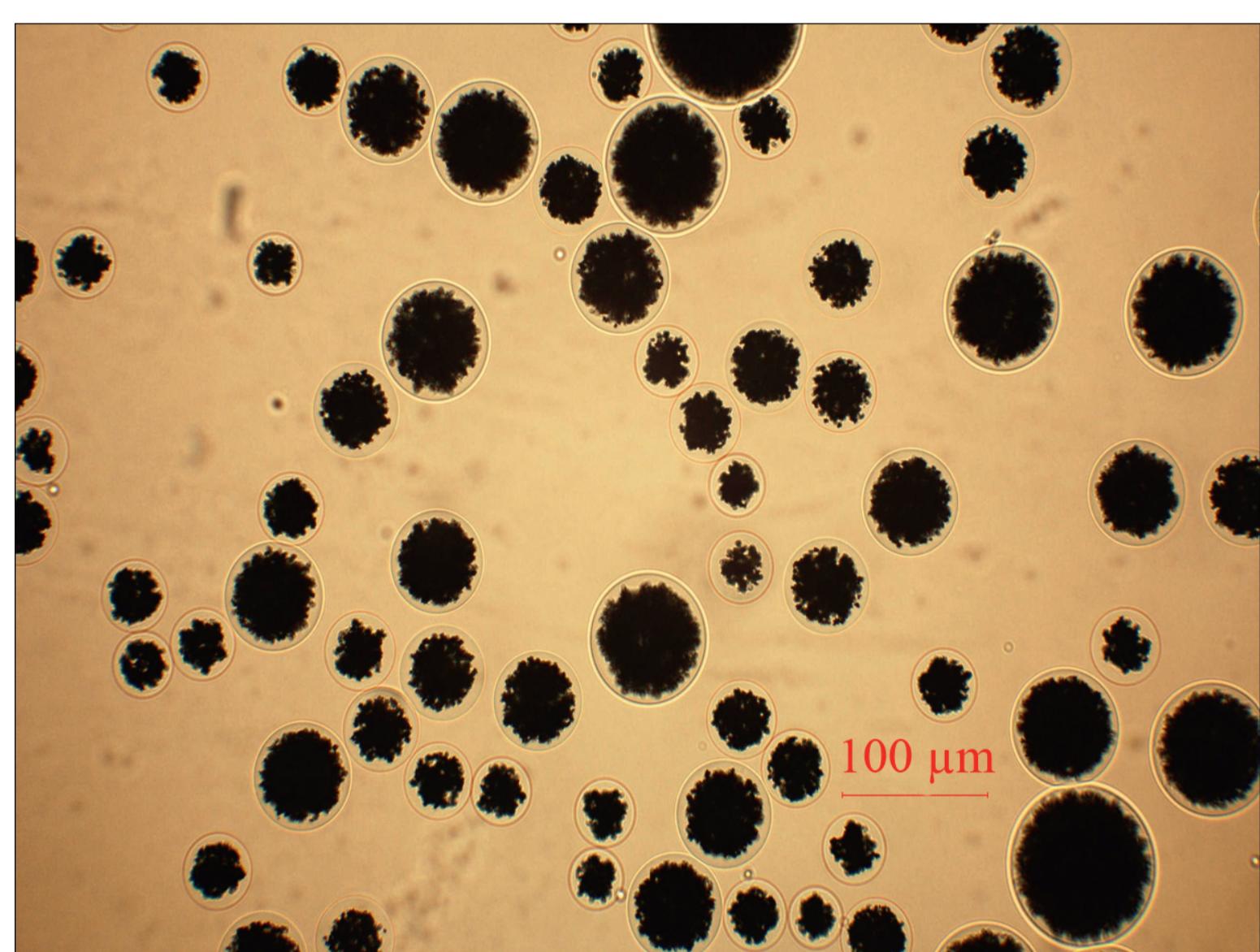



Fig 1. Microscopy picture of Mag Sepharose beads. The magnetite is centered in the middle of the particles with a thin shell of pure agarose on the surface.

## Experimental overview

Proteins active in signaling pathways are normally not detectable with SDS-PAGE or MS analysis due to their low abundance. They are therefore requiring highly selective enrichments methods to be detected.

In combination with anti-pTyr antibodies, the Mag Sepharose technology is a powerful tool for capturing low abundant proteins involved in different signaling pathways from large amount of starting samples (fig. 2).

## Finding low abundant tyrosine phosphorylated proteins in complex mixtures

CHO-cells ( $7 \times 10^7$ ) grown in rich medium were used as a source of tyrosine phosphorylated proteins. Pervanadate, a phosphatase inhibitor, was added two hours prior to harvest in order to prevent dephosphorylation. In a control experiment, this step was omitted.

The cells were lysed in mammalian protein extraction buffer supplemented with EDTA, Na-deoxycholate, protease inhibitors and phosphatase inhibitors. The lysate was clarified by centrifugation and diluted two-fold with binding buffer (TBS) before addition to Protein G Mag Sepharose. The pTyr proteins were eluted with 100 mM phenylphosphate (2 x 5 minutes in 37°C). The eluates were digested with trypsin before analysis by LC-MS/MS.

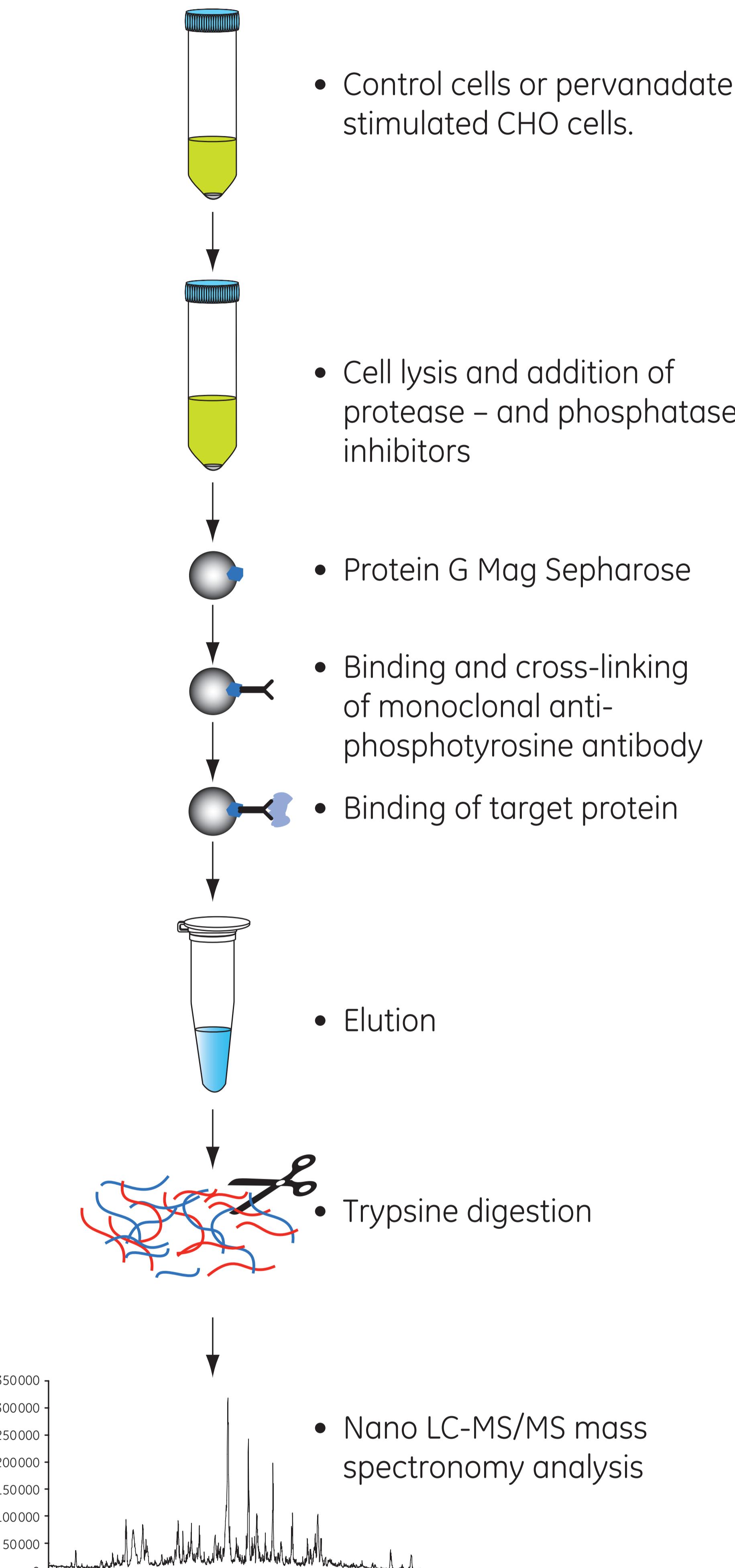



Fig 2. Workflow over the enrichment of tyrosine phosphorylated proteins from CHO cells using Protein G Mag Sepharose. A simple way of capturing low abundant proteins from small or large sample volumes.

|                    |                                                                     |
|--------------------|---------------------------------------------------------------------|
| Medium             | 100 μl Protein G Mag Sepharose 20 % gel slurry                      |
| Sample             | CHO cells pre treated with pervanadate vs untreated CHO cells       |
| Sample volume      | 10 ml                                                               |
| Capturing antibody | Monoclonal anti-phosphotyrosine antibody, clone PY20, isotype IgG2b |
| Binding buffer     | Tris buffered saline (TBS: 50 mM Tris, 150 mM NaCl, pH 7.5)         |
| Wash buffer        | TBS, 2 M urea, pH 7.5                                               |
| Elution buffer     | 100 μl 100 mM phenylphosphate, pH 8                                 |

In the eluate, 76 potential tyrosine phosphorylated proteins were identified. Of these hits, 54 were exclusively found in the pervanadate treated cells and were neither found in the control cells nor in the start material (fig. 3 and table 1).

Some of these proteins such as Caveolin-1, FAK, and SHC are known to be involved in focal adhesion pathways. These proteins may be involved in the regulation of the actin cytoskeleton. Other proteins that are involved in cell motility or cell survival were also found. In the control samples (untreated cells), only 22 proteins were detected, mainly high abundant enzymes and ribosomal proteins. This example clearly demonstrates a simple and efficient capture of pTyr proteins.

## Conclusions

- Efficient concentration and enrichment of tyrosine phosphorylated proteins from mammalian cells.
- The Mag Sepharose technology allows capture of low abundant proteins from large amount of starting samples and elution in MS suitable volumes.

## Identified tyrosine phosphorylated proteins

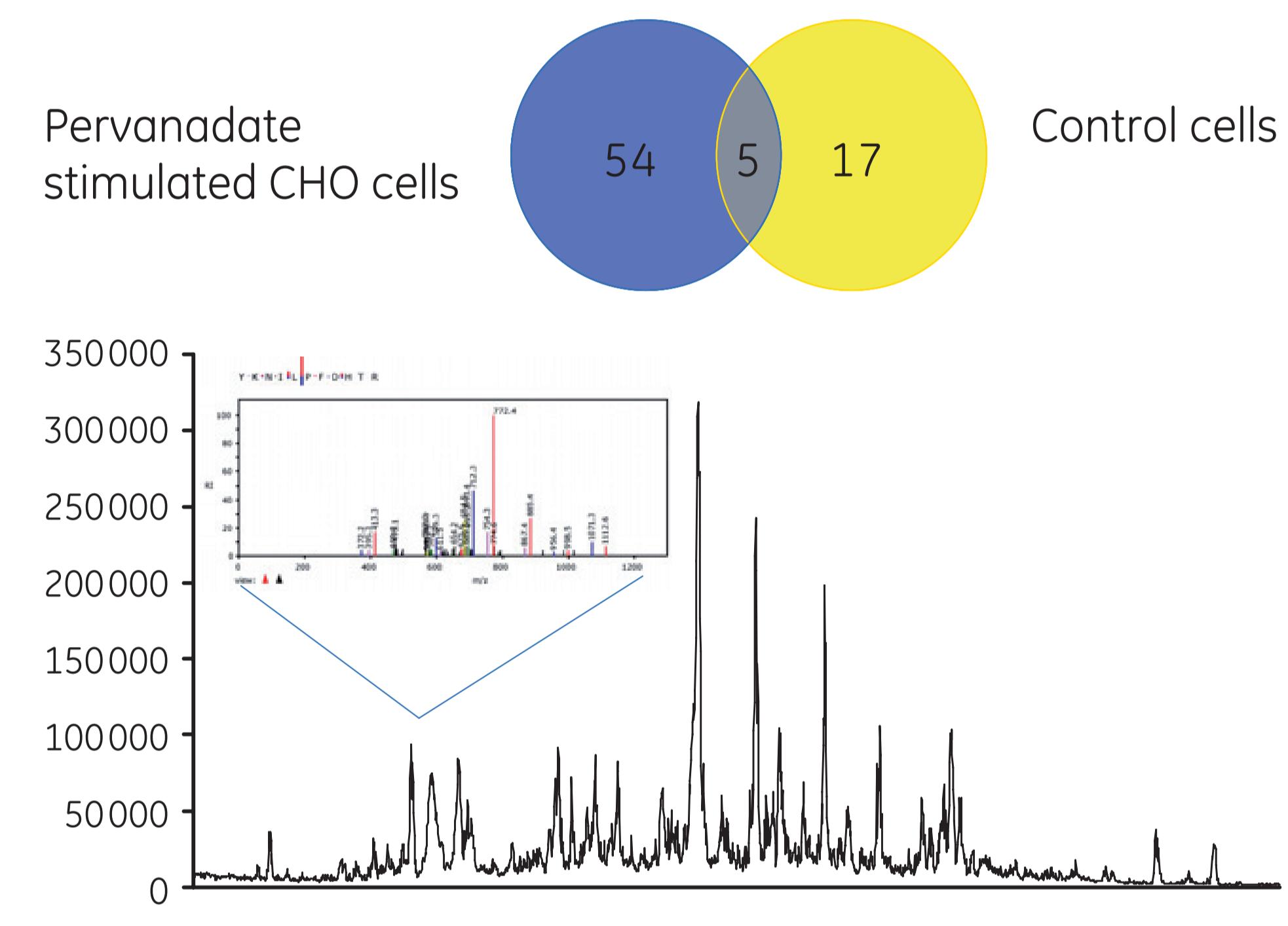



Fig 3. MS analysis of eluted proteins after immunoprecipitation of pTyr proteins from pervanadate-stimulated cells. Before analysis the proteins were cleaved with trypsin. An example MS/MS spectrum of a pTyr peptide is shown and was identified as PTpN11.

Table 1. The 20 most significant identifications exclusively found in the pervanadate stimulated CHO cells.

| Protein                                                                                | Total | M <sub>r</sub> | Accession number |
|----------------------------------------------------------------------------------------|-------|----------------|------------------|
| protein tyrosine phosphatase                                                           | 22    | 68.3           | gi 458333        |
| caveolin-1                                                                             | 11    | 20.5           | gi 603661        |
| beta-tubulin isotype I [Cricetulus griseus]                                            | 6     | 49.6           | gi 473884        |
| Cav1 protein [Rattus norvegicus]                                                       | 1     | 19.7           | (H) gi 124504347 |
| AHNAK [Mus musculus]                                                                   | 6     | 224.0          | gi 37675525      |
| focal adhesion kinase                                                                  | 8     | 119.1          | gi 193224        |
| beta tubulin [Cricetulus griseus]                                                      | 1     | 49.7           | (H) gi 537407    |
| gamma-actin                                                                            | 1     | 41.8           | (H) gi 309089    |
| M1 pyruvate kinase [Rattus norvegicus]                                                 | 5     | 57.8           | gi 206204        |
| cortactin                                                                              | 5     | 61.2           | gi 509495        |
| 47-kDa heat shock protein [Mus musculus]                                               | 4     | 46.5           | gi 303678        |
| ABL2 [Mus musculus]                                                                    | 3     | 128.1          | gi 68139002      |
| SNAG1 [Mus musculus]                                                                   | 4     | 67.9           | gi 15559064      |
| polymerase I-transcript release factor; PTRF [Mus musculus]                            | 3     | 43.9           | gi 2674195       |
| calmodulin synthesis                                                                   | 3     | 16.8           | gi 192365        |
| beta-actin [Marmota monax]                                                             | 1     | 32.0           | (H) gi 9864780   |
| unnamed protein product [Rattus norvegicus], 3                                         | 3     | 47.1           | gi 56107         |
| enolase 1                                                                              |       |                |                  |
| eps8 binding protein [Rattus norvegicus]                                               | 3     | 51.7           | gi 5882255       |
| Chain B, Refined 1.8 Angstroms Resolution Crystal Structure Of Porcine Epsilon-Trypsin | 3     | 8.8            | gi 999627        |
| Rous sarcoma oncogene [Mus musculus]                                                   | 3     | 59.9           | gi 123219085     |



imagination at work

GE, imagination at work, and GE monogram are trademarks of General Electric Company.

Sepharose is a trademark of GE Healthcare companies.

All third party trademarks are property of their respective owners.

© 2009 General Electric Company—All rights reserved.

First published Sep. 2009.  
All goods and services are sold subject to the terms and conditions of sale of the company within GE Healthcare which supplies them. A copy of these terms and conditions is available on request. Contact your local GE Healthcare representative for the most current information.

GE Healthcare Bio-Sciences AB, Björkgatan 30, 751 84 Uppsala, Sweden.