GE Healthcare Life Sciences

Diafiltration time optimization

Method Description

In a concentration process, the optimized crossflow and TMP conditions established above can be used to identify the diafiltration point (the point which provides the fastest buffer exchange), and optimal buffer consumption. A typical result file for diafiltration time optimization is shown in Fig. 1.

Figure 1 Result file for diafiltration time optimization. Flux is the grey curve, concentration factor is the blue curve.

A curve of Flux*concentration factor versus concentration factor can be created in the Evaluation module which enables the optimization of diafiltration time (Fig. 2). The highest value on the y axis at the highest concentration identifies the fastest diafiltration with the lowest buffer consumption. This example also shows that diafiltration takes the same time if performed at four times or five times concentration, because the decrease in retentate volume at five times concentration is offset by the decrease in flux.

Figure 2. Diafiltration time optimization.

Diafiltration factor

The Diafiltration factor (DF) is the percentage of original buffer remaining in the feed:

Diafiltration factor =Sample Volume/Buffer Volume

The volume of buffer required to achieve a desired diafiltration factor can be calculated using the following formulae:

Continuous diafiltration: $C_{f}/C_{o} = (1-\beta)DF/\beta$

One shot diafiltration: $C_f/C_o = 1/(DF+1)$

Discontinuous diafiltration: $C_f/C_o = 1/2DF$

Where:

 $C_{f} = final concentration$

 $C_{o} = Original concentration$

 β = sample turn over ratio per unit time

Diafiltration factor (x)

Figure 3 Effect of diafiltration methods on the buffer concentration.

GE, imagination at work, and GE monogram are trademarks of General Electric Company. © 2011 General Electric Company – All rights reserved.

GE Healthcare Bio-Sciences AB, Björkgatan 30, 751 84 Uppsala, Sweden.