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The conference series devoted to high-throughput process development (HTPD) has established itself as the leading 
forum within its field. After meetings in Krakow, Poland in 2010, in Avignon, France in 2012 and in Siena, Italy in 2014,  
the fourth HTPD meeting was held in yet another UNESCO World Heritage site — Toledo, Spain — in October 2017.

The goal of this scientific conference has not changed since the very first meeting in 2010, it is still to provide a leading 
forum for discussion and exchange of ideas surrounding the challenges and benefits of employing high-throughput 
techniques in the development of manufacturing processes for biological products. HTPD methods are now widely used 
in all areas of process development (PD), from upstream processing to stable formulations. To date, these methods have 
proven especially well-suited for the development of robust downstream processes and there are many examples of 
routine utilization also for upstream processes, and this area continues to rapidly evolve. However, challenges remain 
before the full value of HTPD methods becomes realized, and several of these challenges were discussed during the 
conference.

HTPD 2017 conference started with the plenary lecture ”Miniaturization in Process Development — HTPD at the Nano 
Scale” by Marcel Ottens, Associate Professor at Delft University of Technology in the Netherlands. The conference 
continued with four case study sessions that covered upstream and downstream processing as well as drug substance 
modifications and formulations: one session focused on smart PD and one concluding session presented frontiers in PD.

About 100 delegates from 17 different countries and 44 different companies/academic institutions could enjoy 27 oral 
presentations and 26 posters in total. Based on feedback, this fourth HTPD conference could be considered as the most 
successful HTPD event ever.

This extended abstract book captures some of the presentations and posters from this very exciting conference. We hope 
that this book will serve as a resource and summary of the first-rate talks and discussions, as well as encourage you to 
participate in future events in this HTPD conference series.

Our thanks go to the session chairs for their efforts in putting together excellent sessions, to the presenters for their 
contributions, and to the participants for making this a truly valuable and enjoyable event.

Philip Lester 
Roche

Mats Gruvegard 
Cytiva

Karol Łącki 
Avitide
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Introduction
The fundamental hypothesis of in silico scale-up and scale-down of chromatography methods is that only the fluid 
dynamics outside the pore system change. Once a sample component enters the pore system, pore diffusion, adsorption, 
and desorption are assumed to follow the same mechanism in a filter plate as in a production column. An adsorption 
isotherm determined at one scale is thus transferable to any other scale.

Isotherm determination by filter plate experiments is favorable because of its simplicity. In comparison to column 
experiments, fluid dynamic effects such as axial dispersion and film transfer as well as binding kinetics can be neglected 
due to the long incubation time.

The typical work flow for calibrating an adsorption isotherm model for further use in column experiments is to:

1. Apply the stock solutions with concentration (c0).

2. Incubate.

3. Centrifuge and measure supernatant concentration (c).

4. Assume a phase ratio and calculate adsorbed concentration (q).

5. Assume an “equivalent column volume” factor [1].

6. Estimate adsorption isotherm model parameters from q/c data.

The fifth step is necessary to account for the differences in adsorber slurry concentration, duration of the packing process, 
adsorber compressibility, and similar that lead to different packing densities [1]. 

Both, the fifth and sixth step are error-prone. In a per-well capacity study of filter plates prepared with a ResiQuot device, 
considerable well-to-well differences [2] and, most importantly, deviations from the expected equivalent column volume 
that result in wrong predictions of column experiments, could be found (Fig 1).

To solve this, we present a modified method for fitting batch isotherms to mechanistic model equations that relies only 
on the applied and measured supernatant concentrations. An assumption of the resin amount in the well is not needed 
anymore.
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Fig 1. Fitted lysozyme isotherm model to measured data points using an equivalent column volume factor from 
literature (top) and resulting deviation of a predicted breakthrough curve of a column experiment (bottom).
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Materials and methods
Materials and software
This study was performed with lysozyme on the compressible agarose-based SP Sepharose™ FF adsorber (Cytiva, Uppsala, 
Sweden), a strong cat-ion exchange resin. Details on the used equipment, column and plate formats, as well as chemicals 
are given in Huuk et al. [2].

The fitting of model equations was accomplished with MATLAB® 2017b, column simulations were performed with the 
ChromX™ software [3].
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Theory
For the chosen ion-exchange mode, the typically chosen isotherm equation is the steric mass action (SMA) model [4]: 

q = keq (Λ − (ν + σ)q)
ν
 c,

csalt

minkeq,ν, σ ||qmeasured − qmodel (keq       )||., ν, σ

1 − ε

1 − εminkeq,ν, σ, ε || 
     ε     (c0 − c) − qmodel (keq        )||.

qmeasured = 
     ε     (c0 − c) and the objective function to 

,ν,σ

qmodel = keq (  Λ − (ν + σ)q  )
ν

 (c0 −  
1 − ε  

qmodel).εcsalt + 
1 − ε νqε

Where Λ is the scale-independent ionic capacity per adsorber skeleton volume and keq, ν, and σ are protein specific 
parameters that are determined by curve fitting with the objective function

The measured q is calculated from the difference of applied protein concentration (c0) and measured supernatant 
concentration (c) after centrifugation using an assumption on the phase ratio. Introducing a porosity parameter (ε), 
defined as the ratio of fluid volume to whole well volume, we can write q as 

With ε as new model parameter, we can substitute c in the SMA equation to allow an easier solution of the fix point 
equation q = f(q) and also account for the increase in the salt concentration due to protein binding:

Results
As shown in Figure 1, fitting an isotherm equation to uncorrected q/c data points using common assumptions lead 
to an offset between column simulation and measurement. In Huuk et al. [2], it could be shown that an individual 
correction of the data points, using per-well ionic capacity measurements, lead to an equivalent column volume factor 
of 1.3 and a much better agreement of simulation and measurement. In comparison, the equivalent column volume 
factor of 1.6 reported in Bergander and Łącki [1] lead to a too low concentration of q, inaccurate model parameters, 
and no transferability from one scale to the other.
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Fig 2. Fitted lysozyme isotherm model (green line) to measured data points (green points) resulting after 
estimation of well porosity. Bound protein concentration values from Figure 1 are shown in orange and  
per-well corrected values in blue.
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When re-estimating the isotherm parameters and the newly introduced porosity parameter (ε), the resulting  
q values were again higher than the originally obtained ones but in average lower than the per-well corrected  
values (Fig 2).

The resulting simulated breakthrough curve agreed very well with the observed. The saturation capacity (qmax) 
per adsorber skeleton determined from the measured breakthrough curve was 1020 g/L. In comparison, the new 
method based on porosity estimation resulted in 1008 g/L, which is closer than the value of 1040 g/L obtained  
from individual well correction in Huuk et al. [2]. The simulation in Figure 1, using an equivalent column volume factor 
of 1.6, was 900 g/L.

When evaluating the least squares curve fitting residual in an interval around the estimated well porosity, a unique 
minimum could be found (Fig 3) that indicates that the porosity value is uniquely determinable. This is intuitively 
clear as different adsorber amounts resulting from varying ε lead to different c0, c pairs that would deviate from the 
measured pairs.
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Fig 3. Least squares residual error plotted over porosity values from 0.97 to 1, showing a clearly defined optimum.

Summary
Using the presented method, average well porosities in a 96-well plate filled with 
SP Sepharose FF could be determined from a single isotherm at constant buffer 
salt concentration. A manual calculation of the bound protein concentration using 
assumptions of the phase ratio is not needed anymore. The resulting binding 
capacity follows the same trend as correcting each well individually, using ionic 
capacity measurements. Finally, the obtained isotherm parameters could be used 
successfully to predict a breakthrough curve on a lab-scale column. This confirms the 
initial hypothesis that protein adsorption follows the same mechanisms in batch and 
column chromatography and that isotherm model parameters are transferable from 
one scale to another.

References
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Introduction
The majority of downstream processes (DSP) for biopharmaceuticals are nowadays based on chromatographic 
separation techniques. Future DSP has to meet the evolving expectations of regulators, such as a mechanistic process 
understanding proposed within the quality by design (QbD) framework. The most sophisticated approach to develop  
a mechanistic process understanding is the implementation of fundamental models for chromatography. To implement 
these models under real industrial conditions, the models need to be able to predict the highly overloaded conditions  
in preparative purification tasks. A second challenge is the transferability of model parameters between different  
column scales, which is important for process scale-up and the incorporation of small-scale data. 

This paper presents an industrial case study on an intermediate purification of a monoclonal antibody based on  
high-protein-load-density ion exchange chromatography. Under the prevailing circumstances of a high protein load 
density and a low salt concentration in the protein sample, an unusual elution peak shape can be observed. This 
phenomenon cannot be modeled with the commonly used equations for ion exchange chromatography. 

Materials and methods
The case study covers a range of experimental systems from commonly used 16 mL lab scale and 1 mL small-scale 
columns, down to the 0.6 mL RoboColumn™ format. The experiments in 1 and 16 mL scale were carried out using an 
ÄKTApurifier 10, the RoboColumn experiments with a Tecan Freedom EVO™ liquid handling station. The POROS™ 50HS 
adsorber was used for this cation exchange step. The running buffer for all experiments was a 10 mM sodium citrate 
buffer at pH 5.0 with additional sodium chloride.

The monoclonal antibody is of IgG class and derived from Chinese hamster ovary (CHO) cell cultivation. The mAb pool 
was purified by preparative affinity chromatography. The antibody concentration was 12.7 g/L, with a monomer content 
of 98.3%, as quantified by size exclusion chromatography (SEC). Chromatogram simulation and isotherm parameter 
estimation were carried out using GoSilico’s ChromX software [1]. ChromX provides the functionality to create models 
from raw chromatograms and allows in silico process scale-up/scale-down.
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Results
Model calibration
Under low load conditions, a typical Gaussian peak shape can be observed that 
transforms into a trapezoidal shape with increasing load (Fig 1). Using Mollerup’s 
generalized ion exchange isotherm (GIEX) [2], 
the observed elution peak shapes could be recovered. 

To this end, the GIEX isotherm introduced two additional parameters compared to 
the commonly applied SMA isotherm [3] to approximate the asymmetric activity 
coefficient: 

It could be shown that the parameters can be determined by inverse peak fitting 
[4] (Fig 1). In consequence, the further process development can be performed fast 
and easy in silico. For a derivation of the isotherm models and detailed parameter 
interpretation, the reader is referred to the references by Mollerup [2], Brooks and 
Cramer [3], and Huuk et al. [4].

Parameter quality
While the model fits (Fig 1) and predictions (Fig 2) are very good, the median 
difference of the estimated parameters from 16 mL to 0.6 mL scale is 12%, and  
20% from 16 mL to 1 mL scale. However, most parameters of the 0.6 and 1 mL 
scales lie within the 95% confidence intervals of the 16 mL scale. This means,  
the parameter estimates are at least transferable and probably even identical. 
Only kp is not well identified.

Table 1. 95% confidence intervals (CI) of 16 mL parameter estimates and deviations of the estimated parameter values from 0.6 mL and 1 mL experiments

Parameter
95% confidence interval  
of 16 mL scale estimates

Parameter value deviation  
from 0.6 mL to 16 mL scale

Parameter value deviation  
from 1 mL to 16 mL scale

keff ± 7% - 13% - 20%

kkin ± 78% - 48% - 41%

keq ± 20% + 12% + 32%

ν ± 4% - 2% + 3%

σ ± 0% - 1% + 5%

kp ± 8% - 47% - 293%

ksalt ± 4% + 0% + 1%

(A) (C)(B)

Fig 1. Example chromatograms at equal residence time, salt concentrations, and column loading in 16 mL scale (A), 1 mL scale (B), and 0.6 mL scale  
(C). Simulations are plotted in color, measurements in dark blue.
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Fig 2. 16 mL simulation (orange) repeated using model parameters from 1 mL scale (green) and RoboColumn scale (blue) under low load density (A) and high 
load density (B, C). UV measurements are shown in dark gray.
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In silico scale-up
To demonstrate that the adsorption model is indeed scale-invariant, the estimated model parameters from the 1 mL 
and 0.6 mL scale were applied for the prediction of the elution behavior on the 16 mL scale (Fig 2). Just the column 
dimensions, porosity, and ionic capacity remain scale-dependent and were determined separately [4]. From visual 
inspection of Figure 2, it is obvious that the differences in model parameters lead only to minor changes in the simulated 
chromatograms. Hence, the differences in peak shape when scaling up (Fig 1, right to left) can be accurately predicted 
under the assumption that the thermodynamic properties of the system stay constant. 

Summary and outlook
This case study supports the fundamental assumption of in silico scale-up and scale-down of chromatography, that 
only the fluid dynamics outside the pore system change. Once inside the pores, the same mechanism applies to 
robotic and laboratory-scale columns. Even for the observed complex adsorption behavior, the models calibrated from 
three gradients at 0.6 and 1 mL scale were able to accurately predict the 16 mL scale. A further scale-up to pilot and 
production scale is expected to work successfully as well.
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1. Hahn, T., Huuk, T. C., Heuveline, V., and Hubbuch, J., Simulating and optimizing 
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Fig 1. Demonstration of how prefilling collection plates and using PABA allowed dropwise resolution for 
pulse tests. (A) Visual representation of minimum working volume of well, demonstrating how working below 
minimum volume leads to inaccurate measurement. (B) A single pulse test performed on a 600 μL column 
using PABA at dropwise resolution achieved by prefilling the wells.
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Microscale chromatography is a powerful tool in process development, providing the opportunity to perform a 
large number of experiments with reduced material, labor, and time consumption. However, there are numerous 
differences apparent in microscale chromatography that are not seen at laboratory-scale and above, such as poor 
resolution, low superficial flow velocities, and intermittent flow, which inhibits the quality, interpretation, and 
application of microscale data to larger systems.

Mechanistic models have simulated a wide variety of chromatographic systems for the purposes of understanding, 
improving, and scaling processes. We have employed a general rate model (GRM) and methods for improved 
resolution in order to mitigate the scale and operation artefacts often seen in microscale chromatography data.

Improving resolution 
The lowest resolution one can achieve with liquid handler-operated microscale columns is usually determined by 
the minimum working volume of the collection vessel, often 96-well plates. Fractions with volumes beneath this 
minimum will not exhibit an even meniscus, and therefore cannot be accurately measured by the single-point UV 
spectrometry used to measure volume and infer protein concentration (Fig 1A). There have been many creative 
approaches to improve upon this, including sampling the fractions into 384-well plates (Evans, Stewart et al. 2017) 
and staggering collection points for multiple equivalent columns (Osberghaus, Drechsel et al. 2012). We have 
prefilled the wells with buffer above their minimum working volume, allowing all subsequent drops to meet this 
minimum volume threshold. This approach, when paired with changing the UV analytes from a volatile, weakly UV 
absorbing compound (acetone) to a non-volatile, strongly UV absorbing compound (para-aminobenzoic acid [PABA]), 
has allowed us to reduce fraction volumes, and therefore resolution, to a single drop for individual columns on 
conventional 96-well plates (Fig 1B).
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Fig 2. Intermittent flow effects at a range of residence times. (A) to (C) demonstrate that the offset between intermittent flow (dark) and constant flow (light) for 4.7 mL columns operated on an ÄKTA™ system becomes 
significant at lower residence times, with a noticeable offset at 160s, at 240s and higher, no significant offset is seen. (D) The magnitude of this saw tooth motif matches well with microscale data.

(C) (D)

Determining the impact of intermittent flow
During normal operation of microscales columns upon a liquid handling system (LHS), intermittent flow is experienced 
as the system performs operations such as refilling pipettes, changing plates, and washing tips. A ‘saw tooth motif’ has 
been previously reported in breakthrough curves generated from microscale columns (Wiendahl, Schulze Wierling et al., 
2008). Screening this effect at large scale was performed, and a method was written on a conventional FPLC system to 
mimic this intermittent flow regime upon a 4.7 mL column (Fig 2).
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Model calibration
The GRM is one of the more comprehensive models of chromatography, with terms describing most significant mass 
transfer resistances, such as pore diffusion, film diffusion, axial dispersion and convection, the bed characteristics (column 
porosity and particle porosity), as well as the adsorption isotherm (binding capacity and equilibrium coefficient). For 
accurate models, all of these terms must be estimated, either by engineering correlations or by empirical results (Fig 3). 

Fig 3. The general rate model (GRM). (A) The GRM mass balance equations. (B) Schematic describing the significant mass transfer resistances in preparative 
chromatography, and the parameters describing them in the GRM.
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Using the high-resolution pulse tests, one can fit the bed characteristics by using a range of pulse agents: a small molecule 
(PABA) able to rapidly diffuse into the particle structure gives a measurement of total porosity; a large molecule (dextran 
2 000 000) that is sterically hindered from entering the pore network provides a measure of bed porosity; and the target 
protein under non-binding conditions provides a measurement of how much of the total pore network the molecule can 
diffuse into. The adsorption isotherm was determined by batch studies, and two breakthrough experiments calibrated the 
pore diffusion coefficient, with the film diffusion coefficient estimated using established correlations. Simulation of the 
model was achieved using the chromatography analysis and design toolkit (CADET) (von Lieres and Andersson 2010), with 
an optimization scheme in MATLAB fitting the mass transfer parameters using the inverse method (Fig 4).

Using this microscale model, one could remove the intermittent flow and simulate for the bed parameters and flow-dependant 
mass transfer resistances at scale. This model, calibrated with microscale breakthrough experiments, microscale pulse  
experiments, adsorption isotherm, and large-scale pulse data (using small volumes of material), could predict breakthrough 
behavior at scale, at a range of flow rates, offering a significant improvement to directly comparing microscale to larger 
scale data (Fig 5).

This approach has enabled one to account for and mititgate the scale, system, and operational effects seen with 
microscale data, and build more accurate models, predicting large-scale behavior with microscale data.

Fig 4. Model of 600 μL protein A columns at two breakthroughs, demonstrating fitting of the ‘saw tooth’ motif. The model was formulated to simulate no flow 
for certain times, determined by measuring the length of time taken for the LHS to perform certain operations (plate changes, pipette filling, and tip washing).

Fig 5. Predictive large-scale model. When comparing (A) the raw microscale data to large scale data, (B) the 
predictive large-scale model when compared to experimental data demonstrates a significant improvement.

(A)

(B)
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Background
We developed an automated, multi-well plate (MWP)-based screening system for 
suspension cell cultures (Fig 1), which is now routinely used in late-stage cell culture 
process development. The system is characterized by a fully automated workflow 
with integrated analytical instrumentation. It uses shaken 6–24-well plates as 
bioreactors, which can be run in batch and fed-batch mode with a capacity of  
up to 576 bioreactors in parallel [1–3]. With these features, the system enables: 

• High degree of parallelization and automation

• Sophisticated experimental designs (i.e., design of  experiments [DoE])

• Statistically sound data sets based on a large number of replicates

• Deeper process understanding for increased process control

A wide-ranging analytical portfolio to monitor cell culture performance is an 
integrated part of the system. Product quality is characterized in collaboration with 
internal high-throughput (HT) analytics groups. In addition, the use and the benefits 
of spectroscopic methods for cell culture automation was shown in the past [4, 5].

Incubation Cell seeding
Cell feeding

Sampling
Assay preparation

Cell staining (i.e., growth,
viability, apoptosis)

Nutrients, metabolites
Product concentration

Automated plate handler

Automated microtiter
plate incubator

Modular analytical
instrumentation

Automated
pipetting platform

Fig 1. Schematic illustration of the automated cell culture system. Only the core system is shown with a robotic plate handler as key device, connecting 
cultivation, processing, and analytical parts.
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Full factorial design with 
enhanced parameter 
space and replicates  

Increase probability to find the most promising parameter

Fig 2. Illustration of the potential of cell culture automation to find the most promising parameter by screening multiple parameters at the same time.

Materials and methods
Automated cell culture systems enable broader screening within a shorter time frame for many applications in 
upstream process development. Automation, together with the higher degree of parallelization, helps to screen 
for the most promising parameters in a shorter time. In addition, the use of broad DoE screening design allows the 
identification of parameters that support high titers, while keeping high product quality (multiple factors at the 
same time) (Fig 2). The illustration in Figure 3 shows an example of how this combination can speed up process 
development steps. Main applications of the cell culture automation are, for example, the identification of product 
quality levers, medium or feed optimization, and clone screenings.

Start Optimization

n = 8 n = 8

Verification

Time

n = 32

Start Optimization Verification

n = 8 n = 8n = 144
(each N in 4-fold replicate, sum = 576)

Time

Process development with high throughput cell culture

Start Optimization

n = 8 n = 8

Verification

Time

n = 32

Start Optimization Verification

n = 8 n = 8n = 144
(each N in 4-fold replicate, sum = 576)

Time

Process development with high throughput cell culture

Fig 3. Example of how cell culture automation can speed up process development steps.

Process development without high throughput cell culture

Process development with high throughput cell culture
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Fig 4. Data workflow controlled by the in-house developed process control system called SHARC (software for high throughput applications using robotics).

The handling of big data is one of the most challenging points for every  
high-throughput system. To overcome these challenges, the SHARC (software  
for high throughput applications using robotics) process control system for  
high-throughput systems was developed. SHARC controls all data-related 
experiment steps from planning to execution and evaluation. Figure 4 shows  
the data workflows controlled by SHARC.

Results
The application of the cell culture automation is shown, using three examples of 
late-stage upstream process development. 

In the first application, the goal was to identify levers to reduce trisulfides. By 
a screening of 39 conditions in parallel (in 4-fold replication, 158 wells in sum), 
a reduction of trisulfides by 97.5% (normalized to start level) was possible. In 
addition, the levers for trisulfide reduction were identified. The best and start 
conditions were verified in bioreactor scale (Fig 5). 

The goal in the second application was to increase product concentration without 
impacting product quality. By a screening of 54 conditions in parallel (in 4-fold 
replication, 216 wells in sum), the increase in titer from 1.5 to 3.7 g/L (factor of > 2) 
was possible by medium platform change and medium optimization. Any impact 
on product quality could not be seen. The best conditions were also verified in 
bioreactor scale (Fig 6).
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Fig 5. Application of the automated cell culture system in the identification of product quality levers. The orange bars show the 
starting point of the development step in bioreactor scale. The green bars show the results of the optimization step in the automated 
cell culture system. The blue bars show the results of the corresponding verification steps in the bioreactor scale. The trisulfide level 
 is normalized to the highest trisulfide level of the bioreactors at the starting point.

Fig 6. Application of the automated cell culture system in the field of titer optimization. The orange bars show the starting point of the 
development step in bioreactor scale. The green bars show the results of the optimization step in the automated cell culture system. 
The blue bars show the results of the corresponding verification steps in the bioreactor scale.

24



0

1

2

3

4

5 (each N in 4-fold replicate, sum = 480) (each N in 4-fold replicate, sum = 216)

Screening

n = 120

P
ro

du
ct

 c
on

ce
nt

ra
ti

on
 (g

/L
)

Optimization

n = 54

31%
increase

106%
increase

C
lo

ne
 0

1

C
lo

ne
 0

2

C
lo

ne
 0

3

C
lo

ne
 0

4

C
lo

ne
 0

5

C
lo

ne
 0

6

C
lo

ne
 0

7

C
lo

ne
 0

8

C
lo

ne
 0

9

C
lo

ne
 1

0

C
lo

ne
 1

2

C
lo

ne
 1

1

C
lo

ne
 1

3

C
lo

ne
 1

4

C
lo

ne
 1

6

C
lo

ne
 0

1

C
lo

ne
 0

2

C
lo

ne
 0

4

C
lo

ne
 0

5

C
lo

ne
 0

6

C
lo

ne
 0

9

C
lo

ne
 1

6

C
lo

ne
 1

5

Fig 7. Application of the automated cell culture system in advanced clone screening. The illustration shows a combination of clone screening and process 
optimization in one experiment followed by a second optimization step. The bar color characterizes the clone, and the different bars for the same color 
describes different process conditions.

The third application is the use of the automated cell culture system in advanced 
clone screening, a combination of clone evaluation and process optimization in one 
step. The goal was to identify the top clone under optimized fed-batch conditions. 
Altogether, 16 clones were evaluated with up to 9 different process conditions per 
clone. In sum, 120 different conditions were tested (in 4-fold replication, 480 wells 
in sum) in the first step. In that setup, for example, a titer increase of 106% could 
be seen between the best and the worse condition for the same clone. In a second 
step, another process optimization was performed for the top 7 clones and in sum 
54 conditions (in 4-fold replication, 216 wells in sum). With that, an additionally titer 
increase of 31% was possible for the same clones as in the first step (Fig 7).

Conclusion
The benefits of using cell culture automation in late-stage process development 
were shown, using three examples of current applications. For this purpose, the 
experimental results of the development work of three projects, using the in-house 
developed automated cell culture system, were shown. The first example shows the 
capability of the automated cell culture system by significantly reducing trisulfides 
in just one experiment. For the second project, the final product concentration 
could be increased by a factor of 2.5 by a medium screening and changing to the 
in-house medium platform. The last project demonstrates the capability to perform 
a clone screening and a process optimization in one step. For all applications, the 
automated cell culture system was predictive for the standard bioreactor.

These three examples show the potential of cell culture automation as a routine 
tool in process development.

25



Acknowledgements
The author would like to thank the cell culture automation team (J. Hoffmann, G. Pechmann, C. Schuster), all internship 
and diploma students (S. Spielmann, K. Müller, B. Frommeyer, J. Wisbauer, A. Gutknecht), former members of the cell 
culture automation team (K. Joeris, S. Markert), the Roche Penzberg pilot plant team, and all Roche Penzberg portfolio 
project teams.

References
1. Markert, S., Joeris, K. Development of an automated, multiwell plate based screening system for suspension cell 

culture. BMC Proc 5 (Suppl 8): O9 (2011).

2. Markert, S., Musmann, C., Joeris, K. Development and application of an automated, multiwell plate based screening 
system for suspension cell culture. BMC Proc 7 (Suppl 6) P113 (2013).

3. Markert, S., Joeris, K. Establishment of a fully automated microtiter plate-based system for suspension cell culture 
and its application for enhanced process optimization. Biotechnol Bioeng. 114, 113-121 (2017).

4. Musmann, C., Joeris, K., Markert, S. Spectroscopic tools for an automated suspension cell culture screening system. 
BMC Proc 9 (Suppl 9): P31 (2015).

5. Musmann, C., Joeris, K., Markert, S., Solle, D., Scheper, T. A review of spectroscopic methods for high-throughput 
characterization of mammalian cell cultures in automated cell culture systems. Engineering in Life Sciences 16 (2015).

26



06

Comparison of relative resin 
content between prepacked 
mini- and laboratory-scale 
chromatography columns
Elin Monie, Anna Mattsson, Tryggve Bergander, Anna Grönberg, and Eva Heldin
Cytiva Sweden AB, Björkgatan 30, 751 84 Uppsala, Sweden

27



Introduction
Understanding the differences between column formats is key when validating conclusions made in small process 
development formats. Prepacked laboratory-scale columns and mini-columns have different geometry and production 
method, causing differences in the resin dry weight content (DWC) that might impact the results when changing  
format. In this study, aliquots of the same resin lot were packed into both mini- (PreDictor™ RoboColumn units) and 
laboratory-scale (HiScreen™ columns) column formats. Dynamic binding capacity (DBC) of two different resins,  
Capto™ Q and Capto Q ImpRes, for a model protein at different residence time (RT) was used as a functional response. 
Capacity data at different saturation situations was compared with the DWC in the different formats.

Bovine serum albumin (BSA) was loaded until 90% breakthrough. HiScreen columns were operated using an ÄKTA 
system. PreDictor RoboColumn units were operated both on the ÄKTA system, by using an inhouse made adapter, and  
on the Tecan™ robot. In the Tecan method, 200 μL fractions were collected in UV-readable plates and UV absorbance 
at 280 nm was measured off-line. On the ÄKTA system, UV at 280 nm was measured by the on-line detector. The delay 
volume was determined by injection of BSA in non-binding mode. 

Results and discussion
DBC determined on PreDictor RoboColumn units on the Tecan robot are in good agreement with data generated on 
HiScreen columns on the ÄKTA system (Fig 1).
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Fig 1. Comparison of DBC determined at 10% (QB10) and 90% (QB90) breakthrough in PreDictor RoboColumn 
units operated on the Tecan robot and in HiScreen columns operated on the ÄKTA system (four replicates).
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Unused mini- and laboratory-scale columns were disassembled and emptied, and the DWC of the resin was quantitatively 
measured. A small, but significant, difference in resin DWC per column volume between formats were observed. To see  
if the resin DWC affected the DBC, the two column formats were run on the ÄKTA system. The study was performed at  
8 min RT to be close to saturation. The difference in measured DBC was similar to the difference in DWC (Fig 2).

For the Capto Q resin, the shape of the break-through curves differed between PreDictor RoboColumn units operated on 
the Tecan robot and HiScreen columns operated on the ÄKTA system. However, the difference in DBC for BSA is not larger 
than the variation between the columns (Fig 3). 

Conclusions
DBC determined in mini-columns on the Tecan robot are in good agreement with DBC determined in laboratory-scale 
columns on the ÄKTA system.

PreDictor RoboColumn units on the Tecan robot can be used for parallel screening and optimization of DBC in a similar way as for 
laboratory-scale columns on the ÄKTA system used in a sequential mode.

The small, but significant, difference observed in resin dry weight content per column volume correlates with the 
difference in determined DBC between column formats.

Fig 2. Comparison of dry weight content per column volume (DWC/mL) and DBC determined at 5% (QB5), 10% (QB10), and 90% (QB90) breakthrough in 
PreDictor RoboColumn units and HiScreen columns (both operated on the ÄKTA system) at 8 min RT (four replicates). Values normalized to data from 
PreDictor RoboColumn units.
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Introduction
When establishing purification processes for a biosimilar molecule, it is important 
to develop steps that are scalable, selective, and cost-effective.

A cation exchange (CIEX) chromatographic step was developed as part of a 
collaborative project, where expertise in the field of downstream purification and 
bioprocessing was combined with specific biosimilar requirements. A standardized 
workflow was adapted using a high-throughput process development (HTPD) 
approach: chromatography resin and running conditions were selected based 
on experience and adapted to meet requirements. By providing the process 
development support, aggressive timelines could be addressed, which resulted in 
an accelerated progression of bioprocess design to reduce timelines.

The aim was to select the optimal resin from three candidates and provide initial 
running conditions for the chosen resin. The goal was to reduce aggregate levels 
to approximately 0.6% after the polishing step in conjunction with obtaining the 
highest yield possible for the monomer. HTPD experiments were performed in both 
96-well plates and small-scale columns.

Fig 1. The Fast Trak standardized workflow applied for evaluating and selecting resins for a polishing step of a biosimilar molecule. The first part consists of 
screening of a wide area of conditions in a format that allows increased throughput and provides process understanding. The final part involves development 
of a chromatographic method to identify running conditions in an “easy-to-scale-up” approach.
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Table 1. Experimental parameters for SBC screening

Capto S ImpAct Capto SP ImpRes Capto MMC ImpRes

pH 5.0–8.0 (6 levels) 5.2–8.0 (8 levels)

Salt concentration 0–175 mM (8 levels) 0–500 mM (6 levels)

Incubation time 60 min

Sample conc. 3.4–5.1 g/L

Analysis UV absorbance

Table 2. Experimental parameters for elution screening

Capto S ImpAct Capto SP ImpRes Capto MMC ImpRes

Binding condition 1 40 mM phosphate,  
10 mM NaCl, pH 6.2

60 mM acetate,  
10 mM NaCl, pH 5.5

60 mM acetate,  
10 mM NaCl, pH 5.8

Binding condition 2 25 mM phosphate,  
10 mM NaCl, pH 7.2

25 mM phosphate,  
10 mM NaCl, pH 7.2

25 mM phosphate,  
10 mM NaCl, pH 7.0

Salt concentration  
in elution step

10–290 mM  
(8 levels)

10–920 mM 
(8 levels)

Incubation time 120 min

Sample load 20 g/L resin

Analysis UV absorbance for yield SEC for aggregate

Materials and methods
Single-resin plates were used for a broad-range screening of static binding capacity (SBC) (Table 1). Screening 
plates were used for screening of elution conditions (Table 2).

Column experiments were performed on a Tricorn™ 5/100 column with a volume of 2 mL (10 cm bed height) 
at 5.4 min residence time, using an ÄKTA avant 25 system.
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Fig 2. Evaluation of SBC of (A) Capto S ImpAct, (B) Capto SP ImpRes, and (C) Capto MMC ImpRes.

(A) (C)(B)

Results and discussion
Binding study
Contour plots were used for evaluating SBC and visualizing trends. The plots also provided information of which binding 
conditions to test for in the subsequent elution studies as well as possible conditions for column method screening. As  
seen in Figure 2, Capto S ImpAct resin had the highest SBC of the resins tested. 
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Elution screening
The first elution fraction was evaluated for yield and aggregate content (Fig 3). Capto S ImpAct and  
Capto SP ImpRes showed most promising aggregate removal of all tested candidates. In addition, it was  
seen that lower pH was beneficial for aggregate removal. As Capto S ImpAct exhibited the highest SBC,  
this resin candidate and the corresponding conditions was chosen for further optimization. 

Fig 3. Yield (bars) and aggregate content (lines) for (A) Capto S ImpAct, (B) Capto SP ImpRes, and (C) Capto MMC ImpRes.

(A) (C)(B)
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Chromatographic method development
To aim for an increased productivity, the dynamic binding capacity (DBC) was investigated. DBC at 10% breakthrough 
(QB10) was determined by performing frontal analysis at two different pH values (pH 5.5 and 6.0) for Capto S ImpAct (Fig 4). 
The highest binding capacity (QB10 = 145 g/L resin) was obtained at pH 6.0.

The selectivity of Capto S ImpAct between monomers and aggregates was also verified at pH 5.5 and 6.0. The two 
conditions showed similar selectivity, but higher capacity, at pH 6.0. This pH was therefore finally selected. To improve 
the productivity, high sample loads (80 and 100 g/L resin) were evaluated at pH 6.0. Results showed that a sample load 
of 100 g/L resin (70% of QB10) gave excellent aggregate and host cell protein (HCP) removal (Fig 5 and Table 3). This 
fulfilled the biosimilarity requirements at a high sample load, resulting in a polishing step with high productivity.

Conclusions
The close collaboration enabled rapid process development by quick identification of a suitable resin candidate, process conditions, 

and critical parameters. Access to expertise helped develop an adaptable and optimized purification process with improved process 

understanding. Using the Fast Trak standardized workflow, initial running conditions were identified in four weeks for further 

process development.

Fig 4. Dynamic binding capacity of Capto S ImpAct at different pH values.

Table 3. Main peak yield, aggregate content, and HCP results for Capto S ImpAct

Yield (%) Aggregate (%) HCP (ppm)

Start sample N/A 2.2 55

Sample load: 80 g/L resin 95 0.5 13

Sample load: 100 g/L resin 97 0.5 14
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Fig 5. Chromatogram from elution gradient experiment at a sample load of 100 g/L resin.

Start buffer:  40 mM phosphate, 10 mM NaCl, pH 6.0 (4.3 mS/cm)
Elution buffer:  10–250 mM NaCl, linear gradient, 15 column volumes (CV)
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Abstract
In downstream processing of therapeutic proteins, membrane adsorbers (MA) have long been recognized to offer 
significant advantageous compared to resin-based chromatographic processes when used for contaminant and/or 
aggregate removal. The main benefits of MA compared to chromatographic resin are higher mass transfer rates and thus 
elevated productivity, as well as ease-of-use due to the prepacked and often also single-use nature of the membrane 
adsorber devices. Here we describe a high-throughput screening (HTS) robotic technique for solution parameter 
optimization for flow-through (FT) aggregate removal by MA. Protein dimer/aggregate removal and membrane binding 
capacity for monomers and dimers were determined by using eight parallel down-scale Sartobind® Q, anion-exchange 
(AEX) MA. Furthermore, a process map of a recombinant Chinese hamster ovary (CHO) cell-fermented and post-protein A 
clarified immunoglobulin G (IgG) feed could be established.

Introduction
HTS is typically executed on robotic platforms, allowing automated, fast, and reliable workflows with minimized scale-down  
devices and often employed to speed up parameter estimation (Wiendahl et al., 2008). For a HTS setup, the chromatographic  
process must display fluid dynamics, binding capacity, and mass transfer effects (Bellot and Condoret, 1991; Dorsey, 
2012). While fluid dynamics in scale-down models are often misrepresented, binding constants can be determined 
by measuring batch isotherms or FT experiments. Considering process oriented mass transfer restrictions, actual FT 
experiments are necessary.

IEX chromatographic separation performance is mainly influenced by salt concentration, pH value, and stationary phase  
properties (Shan and Anderson, 2001). HTS can be efficiently used to determine performance as a function of the 
solution parameter space (Bensch et al., 2005). 

For process oriented parameter determination in adaption of scale-down models, eight parallel down-scale membrane 
devices — similar to RoboColumn units — of an AEX membrane adsorber were investigated with recombinant CHO  
cell-fermented and post-protein A clarified IgG feed.
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Material 
The determination of the protein concentration of IgG monomer and IgG dimer was 
carried out with the Yarra™ SEC-3000 LC-column (3 µm; 300 × 7.8 mm) delivered by 
Phenomenex. With Sartobind Q, an AEX membrane adsorber with a mean diameter 
of > 3 µm and a ligand density of 2-5 

µeq

cm2 , was investigated. The recombinant CHO 
cell-fermented and post-protein A clarified IgG protein solution was adjusted at four 
different pH-values with a Sartoflow® Smart Hydrosart membrane.

The flow-through verification experiments were carried out with an ÄKTAprime plus 
chromatography system, Cytiva. 

The HTS is based on an eight-channel liquid handling robot Lissy® 2002 GXXL/8P 
delivered by Zinsser Analytic. Down-scale MA devices of Sartobind Q membrane 
(AEX) were used, each having a bed volume of 0.4 mL.

Methods
The MA devices in Figure 1 exhibit a septum port, through which robotic needles can 
penetrate and inject the different solutions with positive pressure through the device. 
Eluate fractions are collected in moveable well plates beneath.

The MA characterization was divided in screening and determination of binding 
capacity to examine possible operation points and influence as shown in Figure 2.

Tip

Membrane
device

Holder

Movable
well plate

Fig 1. HTS device.
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Fig 3. Pipetting scheme.

The HTS system investigates the impact of pH and salt concentration on the separation selectivity of IgG monomer and 
dimer. The eight parallel membrane devices are step-wise loaded at a chosen pH value (6 < pH < 11) in 0.5 steps and 
sequentially eluted at different salt concentrations, respectively conductivity (CD) (2 < CD < 12), as shown in Figure 3.  
Remaining impurities are removed in the regeneration step. Finally, the MA is re-equilibrated. The MA screening for 
eight pH values and six elution steps takes in total 1.5 h. Afterwards, all eluates are analyzed for IgG monomer and dimer 
concentration by size exclusion chromatography (SEC).

Figure 3 displays an HTS result in FT mode and starts with the loading of feed onto the Sartobind Q membranes with 
different bed volumes. Hence, the breakthrough curve can be determined. Afterwards, the MA is washed with binding 
buffer to flush out unbound material. In the next step, elution at different salt concentrations is carried out. The 
respective eluates are analyzed for IgG monomer and dimer concentration. For determining the loading capacity,  
the sum of all sub-sequentially eluted fractions is formed. Thereafter, the MA is regenerated with high salt buffer  
and re-equilibrated with loading buffer. The screening procedure assumes that the determined IgG dimer selectivity 
calculated from binding capacity also holds true for FT mode, leading to a respective FT process map.
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Results
HTS results are shown in Figures 4 and 5. For the investigated solution parameter range, only small differences in binding 
capacity between IgG monomer and dimer are observed. The greatest difference in binding capacities for monomer and 
dimer, and thus the highest selectivity, at reasonably high monomer binding capacities is found between pH 8.5 and 9.5.

In order to confirm the robustness of the HTS approach, the entire screening was replicated with a different feed solution 
and a new set of MA. The results were comparable with a deviation of the IgG monomer and 10% of the IgG dimer 
loading capacity. In general, the mass balance could be closed with a deviation of 10% monomer concentration and, 
due to analytical limitations, at low dimer concentration with a deviation of 20%. For confirmation of the results, four 
FT experiments with MA devices of 4.8 and 3.2 mL bed volume were carried out with the ÄKTAprime plus system. The 
experimental conditions are represented by the black squares in Figures 4 and 5. 

Group 1 in Figure 6 is in good agreement with HTS data and among each other. The breakthrough at pH 9.4 conductivity 
(CD) 2.6 is earlier than expected. This could be related to the low CD in which the AEX binding capacity gap is present. 
Nevertheless, the slopes of group 2 are in good agreement and confirm the HTS predictions. The IgG dimer HTS data 
demonstrate increasing binding capacity at increasing pH value. Furthermore, binding capacity decrease with increasing 
CD. Based on HTS data, the earliest breakthrough should be expected for pH 9.5 at CD 8.8 followed by pH 10 and  
pH 9.3 CD 3.6 which is confirmed in Figure 7.

Fig 4. Process map IgG monomer. Fig 5. Process map IgG dimer.

8.0 8.5 9.0 9.5 10

4

6

8

10

12

14

16

18

20

C
on

du
ct

iv
it

y 
(m

S/
cm

)

pH

0

2

4

6

8

10

12

14

16

18

20

22

B
in

di
ng

 c
ap

ac
it

y 
m

on
om

er

8.0 8.5 9.0 9.5 10

4

6

8

10

12

14

16

18

20
C

on
du

ct
iv

it
y 

(m
S/

cm
)

pH

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

B
in

di
ng

 c
ap

ac
it

y 
di

m
er

20 25 30 35 40 45 50 55 60
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
as

s 
m

on
om

er
 (m

g)

Volume (mL)

20 25 30 35 40 45 50 55 60
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
as

s 
di

m
er

 (m
g)

Volume (mL)

pH 9.4 CD 2.6
pH 9.3 CD 3.6
pH 9.4 CD 8.8
pH 10.0 CD 14.0

pH 9.4 CD 2.6
pH 9.3 CD 3.6
pH 9.4 CD 8.8
pH 10.0 CD 14.0

Fig 6. IgG monomer breakthrough curves for the different FT experiments.

Fig 7. IgG dimer breakthrough curves for the different FT experiments.
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Fig 8. Possible process target function.

Summary 
The presented HTS setup and solution parameter screening principle enable efficient and parallel investigation of a FT 
process range for aggregate removal. The resulting trends were confirmed by selected FT runs. In order to provide fast 
track process operation points and possible quality by design (QbD) approaches, the HTS setup can provide valuable data. 
With a mathematical description of binding capacity as a function of salt and pH value a target function for process design, 
for example, targeting maximal monomer recovery and purified feed volume, as shown in Figure 8, can be generated.
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Introduction
Protein A chromatography has set the bar for the standard performance of affinity purification. The technique led to 
an industry-wide adoption of a platform approach for mAb purification, which means products can be quickly taken to 
proof of concept (POC) studies and rapidly move to commercialization. However, Protein A chromatography is limited 
to antibodies and Fc-fusion drug products. For other biologic modalities (e.g., recombinant proteins, enzymes, vaccines, 
and virus-like particles) to take advantage of the same benefits, manufacturers need access to affinity resins for a wider 
range of molecules. Avitide’s mission is to develop affinity resins that extend the benefits of the Protein A capture step, 
such as fast development, step consistency, as well as high yield and purity for products other than mAb therapeutics. 

The Avitide approach
Development stages
Affinity resin development consists of three stages that each require screening using high-throughput process 
development (HTPD) tools: the affinity ligand, the resin/ligand chemistry, and the capture method development. 

The affinity ligand discovery stage focuses on identifying the interaction that secures the desired selectivity. Avitide 
implements HTPD methods to screen a library of > 1013 affinity ligands from over 40 ligand families. By using such a 
large and diverse library, many different shapes, sizes, conformations, and contact areas between the ligands and  
the target molecule can be screened. The goal is to achieve ligand affinities similar to the affinity of Protein A for  
IgG (10–20 nM), while maintaining stability, manufacturability, and selectivity. 

In the next steps, focus is on developing the resin and the associated chromatography method. These areas are 
inherently intertwined, and as each ligand and base matrix combination is unique, a quality by design (QbD) approach 
to resin screening in combination with “fail-fast” screening techniques is used. This approach allows maximizing the 
time allotted for method development. Four case-studies are presented to highlight these techniques.
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Case 1. Purification of a low-titer recombinant enzyme
When developing new affinity resins, several challenges beyond discovering the ligand itself need to be addressed. In 
this case study, the task was to develop a capture resin for purification of a recombinant enzyme that had a starting 
concentration of 50 mg/L (400 nM) in feed stream. Due to the low titer, prototype resin screening based on dynamic binding 
capacity (DBC) was time-prohibitive. For a typical DBC experiment, a run time of more than 15 h was anticipated. Therefore, 
a higher concentration of the target molecule (1 g/L) was used for DBC screening, which resulted in higher DBC values than 
those that would have been obtained for more dilute feed streams. Consequently, it was decided to base the prototype 
screening on static binding experiments to find prototype resins (ligands) that captured > 90% of the target molecule from 
the feed stream at equilibrium. This method proved exceptionally quick (96 resins in 4 h) and required low material usage. 
Figure 1 shows the observed correlation between DBC (performed at high concentration) and static capture (performed 
at low concentration). While the highlighted resins had lower DBC values than the other candidate resins, these resins 
captured ~ 100% of the target product. The final resin provided yields of > 99% and reduction of host cell protein (HCP) to 
levels below 1000 ppm was achieved. 0
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Fig 1. Resin dynamic binding capacity (target conc. 1 g/L ) plotted against the percent static capture of target 
molecule (target conc. 50 mg/L) from feed stream.
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Case 2. Purification of a hormone (high DBC requirement)
When product titer is not low, screening of prototype resins can be performed based on DBC. However, when 
evaluating resins, some more typical HTPD devices such as RoboColumn units or PhyTip™ columns could not be used, 
as implementing custom resin packing would more than double the current time requirements for resin development. 
Instead, the ProteinMaker™ 12-channel parallel chromatography (Fig 2) was adapted, featuring: 

• Twelve 170 µL columns (3 × 25 mm) screened in parallel and packed on-demand (larger columns are possible, but the 
chosen dimensions minimize material requirements)

• Precise flow rate control for residence times between < 30 s and 4 min (the range of interest for this study)

• Fraction collection into microwell plates for subsequent product quality analysis

• Reproducibility of DBC results (column-column and run-run < 5%)

• Ranking of resins translates to performance at increased bed heights

Use of ProteinMaker enabled narrowing candidate resins down to 10–20 resins, which were more extensively evaluated 
with respect to running conditions, including wash and life time studies. Following this principle, an affinity resin with 
a DBC of 42 g target/L resin could be developed. A more than 2.5 log reduction in HCP and host cell DNA at a 97% step 
yield was achieved with this resin. 

Fig 2. Overview of ProteinMaker 12-channel parallel chromatography, highlighting features and drawbacks.
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Case 3. Development of affinity resin for removal of product-related impurities
One of the most powerful aspects of custom affinity resins is the possibility to discover a ligand that will separate a desired 
form of the product from product-related impurities. This type of separation is often the most challenging to perform with 
traditional separation techniques, as the impurities share many properties with the target molecule. However, a custom 
affinity resin that can target the subtle differences can provide ideal purification solution for such cases. 

One of the major difficulties in developing resins with this type of selectivity is the analytical burden required to evaluate 
the resin performance. Many of the analyses are complex, but still need to be high-throughput. Avitide approaches the 
analytical challenge differently. Instead of separating teams in siloes, the Process Development and Analytics teams 
are integrated. This approach results in more cross-training between these traditionally separated teams. Avitide also 
leverages walk-up solutions, which allow for all the team members to generate and access data as soon as possible from 
each experiment. The diverse range of molecules that Avitide is asked to work with requires that some analyses are 
specific to each project. Robotic sample preparation and processing have greatly facilitated both quick method adoption 
and result generation, enabling the teams to evaluate resins quickly and be agile in iterating the experiments. 
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Case 4. Development of an affinity resin for a gene therapy vector 
Development of an affinity resin for capture of adeno-associated virus (AAV) gene therapy vectors creates one of the 
more difficult resin development challenges. In many ways, the work incorporates each of the same issues identified 
in case studies 1 to 3, but it also adds the complexity that arises by virtue of the size of the target. An AAV has a weight 
of approximately 6 MDa and a diameter of approximately 25 nm. Therefore, to make sure that the best resin will be 
developed, more base matrices (resins) and resin chemistries than in any other campaign were surveyed. This approach 
resulted in a multiple-fold increase in the number of affinity resin prototypes that were developed and tested. As affinity 
purification is a combination of, not only capture, but also elution and cleaning, it is perhaps testimony to the feature 
that the ideal resin for this application was based on an agarose base matrix. The resin delivered high binding capacity, 
gentle elution conditions, 93% yield, and a 3 log HCP reduction. Although only a 10 cycle life time was required for this 
(disposable) resin, the alkaline-stable ligand could have allowed many more cycles.

Final resin selection and scalability
Step elution, inherently scalable
Utilization of HTPD and miniaturized formats can be used as filters for selection of the best affinity resins. As a result, 
only a few prototypes will proceed to the largest R&D column dimensions for confirmation and demonstration of 
resin performance under conditions designed for scalability. Finally, the customer can further evaluate the resins 
with propriety buffers and facility fit considerations. Ultimately, the same metrics used by Avitide for resin evaluation 
during development become the basis of quality control and release assays when the resin transitions to the resin 
manufacturing facility for scale-up and supply in larger quantities.
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E. coli is a well-established host for low-cost and high-yield production of non-glycosylated 
proteins often difficult to produce in other hosts. Proteins overexpressed in this bacterial 
host tend to be deposited in inclusion bodies (IBs), which represent an easy-to-harvest 
source of highly pure product.

Development and trouble-solving activities for upstream processes, regularly 
carried out in form of design of experiments (DoE), are usually based on evaluation 
of product titers only. Yet, high titer does not necessarily guarantee success for the 
subsequent downstream process, a crucial step for the overall productivity of the 
production process. Therefore, process development and optimization work should 
consider the entire process chain, including each unit operation. Integration of DoE 
approaches results in numerous experiments, and such optimization can only be 
timely achieved using a parallelized high-throughput approach at micro scale. 

We recently established a high-throughput platform, connecting extensive upstream 
DoE setups to recovery of active protein from IBs. Figure 1 presents our miniaturized 
and automated high-throughput purification process chain for proteins expressed in 
inclusion bodies. The combined unit operations comprise cell harvest, cell disruption 
and IB preparation, solubilization, refolding, and chromatographic purification. All 
unit operations are performed in 96-well plates on a liquid handling system (Tecan) 
except for cell disintegration, which is performed using a mechanical bead mill (1–3). 

Our investigations on the resolution capabilities of the process chain confirmed 
that purity differences of at least 2% can be distinguished after processing (data 
not shown). Afterwards, we examined the predictive capability of the miniaturized 
process for bench-scale runs (Fig 2). The absolute values for recovery of protein 
and purity differed between scales. This can be explained by the better purification 
capabilities of a packed chromatography column in comparison to batch processes. 
However, the trends determined for product quality derived from different 
fermentations were comparable between scales. The fermentation with the highest 
recovery in micro scale also showed the highest recovery in bench scale and vice 
versa (Fig 2A). The same was shown for the purity. The highest purity in micro scale 
was obtained for the fermentation that also showed the highest purity in bench scale 
and vice versa (Fig 2B) (3). Therefore, we conclude that the developed miniaturized 
platform is predictive for bench scale regarding trends between fermentations.

Cell harvest
• Centrifugation

Cell disintegration/
IB preparation
• Bead mill

• SDS-PAGE/PicoGreen™

IB solubilization
• Follow via turbidity
 decrease in micro
 titer plate

• SDS-PAGE

IB refolding
• Follow via turbidity and
 intrinsic fluorescence
 in micro titer plate

• SDS-PAGE

Chromatography
• Follow via UV in batch

• SDS-PAGE/HPLC/MS

Fig 1. Miniaturized, automated high-throughput process development for non-platform molecules expressed as inclusion bodies in E. coli. 
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Fig 3. Influence of certain upstream parameters on production/abundance of a mass variant. Orange: variant 
is present. Green: variant is not present. (A) Four different medium compositions were tested and analysis 
was performed at four time points during fermentation. (B) Six codon usage variants and three strains were 
analyzed for their influence on the mass variant.
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(A) (B)The platform can be used to support upstream development or for trouble-solving activities. Figure 3 shows an 
application for trouble-solving activities. Here, an additional mass variant of the product was present in the final drug 
substance. An assumption was that upstream-related events were involved in the occurrence of this variant. Thus, 
different upstream parameters were investigated for their influence on the production of the variant. The presence of 
the variant was analyzed by mass spectrometry which required the purification of each fermentation sample prior to the 
analysis. The production of the variant was not influenced by medium composition or length of the fermentation (Fig 3A). 
Irrespective of these parameters, the variant was always present. In contrast, the investigation of variants designed by 
different codon usage revealed one variant that did not produce the previously observed mass variant regardless of the 
E. coli strain tested (Fig 3B). Therefore, by changing the codon usage, it was possible to produce the product without the 
undesired mass variant.
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Fig 4. 3D surface plots obtained after certain processing steps for a DoE carried out for fermentation optimization. (A) Titer as result at end of fermentation. (B) Recovery of IBs produced per L fermentation after IB preparation. (C) Recovery of purified protein  
per L fermentation after complete processing.
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The platform can also be used for optimization of fermentation processes. A fermentation DoE was carried out where 
temperature, pH, and induction time point were varied. The fermentations were thereafter processed on the micro-scale 
platform. Besides the fermentation titer, also the IB yield and quality, refolding yield, as well as yield and purity after 
chromatography could be used for evaluation of the DoE (Fig 4). Fermentation temperature and induction time point 
were found to be significant parameters for the product titer. Late induction and lower temperature were beneficial for 
the process if only the product titer was taken into account (Fig 4A). Taking the IB preparation step into consideration, 
different results were obtained (Fig 4B). While late induction was still beneficial for the IB yield, lower fermentation 
temperature showed no beneficial influence on the IB yield anymore. This is due to the higher product loss during the IB 
preparation for fermentations conducted at lower temperature. Moreover, the quality of these IBs based on compactness 
and product content was not as good as for mid- and high temperatures. Taking into consideration the preparation of 
the IBs, it appears that only the induction time point was a significant DoE parameter. This was confirmed by the data 
obtained including the refolding and capture step (Fig 4C). Also here, late induction showed to be beneficial for the 
overall productivity. Based on these results, mid pH and temperature and the latest induction time point were selected  
as optimized conditions.
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Compared to a traditional sequential bench-scale approach, utilization of our high-throughput platform resulted in reduced 
time and material consumption. Only 2 g of biomass were required for each upstream condition tested, instead of the 200 g 
required for bench-scale experiments. The processing of 24 different fermentation conditions was carried out in 7 days, instead 
of 120 days using the conventional approach. Furthermore, the very low material consumption allows for evaluation of multiple 
time points during fermentation, thereby supporting optimization of the fermentation duration.

In conclusion, we developed a micro-scale purification process chain that is predictive for bench scale and can resolve 
purity differences of at least 2%. The system can be used for trouble-solving as well as for optimization of upstream 
processes. Adoption of the miniaturized process generates broader data sets and improves early process understanding. 
As an additional benefit, each unit operation can be separately performed and used for development of downstream 
processes.
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Introduction
As protein therapeutics become more structurally diverse, the need to evaluate a wider range of formulation conditions 
and rapidly predict long term stability with minimal material demands increases. Technologies that can enable this 
assessment must demonstrate high levels of sensitivity, accuracy, and most importantly, show relevant degradation 
mechanisms known to occur in final drug product configurations. Our group has recently evaluated two approaches to 
increase our overall throughput, while minimizing material utilization.

Application of high-throughput methods to assess physical 
stability
Physical instability of therapeutic proteins, especially aggregate formation, can affect the potency of the drug or cause 
immunogenicity (1). Proteins can associate in the native state or the monomers can unfold, causing the hydrophobic 
regions to interact and aggregate (2). By choosing appropriate buffers, excipients, ionic strength, and pH conditions,  
the formation of aggregates in protein formulations at their storage temperature condition (5°C) can be minimized. 

During formulation development, accelerated thermal stress studies are performed at higher temperatures (30°C or 
40°C) to assess the risk of shelf-life-limiting aggregate formation and other physicochemical properties. Using the 
principles of the Arrhenius equation, the kinetics of aggregate formation at the storage temperature (5°C) can be 
predicted from the degradation that occurs at higher temperatures. However, as the risk of aggregation caused by 
unfolding is low at 5°C, the accelerated stress conditions need to be selected thoughtfully to avoid aggregation of 
thermally unfolded proteins and ensure relevant degradation mechanisms.

Traditionally, differential scanning calorimetry (DSC) is used to measure the temperature at which the protein starts to 
unfold (Tonset). Unfortunately, DSC results do not provide information on when the protein starts to aggregate due to this 
unfolding, making it challenging to determine an appropriate stress temperature for accelerated stability studies on 
DSC data alone. To obtain this information, static light scattering (SLS) can be used to assess the relationship between 
unfolding and aggregation. Scattering intensity in a protein formulation increases with the formation of dimers and 
multimers. The changes in scattering intensity can be monitored across a thermal ramp to identify the temperature at 
which a protein starts to form aggregates and multimers (Tagg). 

In this study, we measured the SLS of two IgG4 mAbs (Proteins 1 and 2) that have the same Tonset, using the same  
thermal ramp. The mAbs were formulated at 1 mg/mL protein concentration; Protein 1 was formulated in high ionic 
strength buffer and Protein 2 in low ionic strength buffer at the same pH. The SLS results of the Protein 1 formulation 
showed large changes in scattering intensity and the scattering intensity increased sharply at the Tonset. There was  
a small differential between the Tonset and the Tagg, suggesting that Protein 1 in the high ionic strength formulation rapidly 
aggregated post unfolding. If this Protein 1 formulation was stressed at a temperature close to the Tonset, the unfolded 
protein could form aggregates unrepresentative of those formed at 5°C. In contrast, the Protein 2 formulation showed little 54



changes in scattering intensity even when heated up to 90°C, suggesting that Protein 2 does not rapidly aggregate upon 
unfolding in the low ionic strength buffer. Despite the similar Tonset between the Protein 1 formulation and the Protein 2 
formulation, the Protein 1 formulation had a small differential between the onset of unfolding and the onset of aggregation, 
whereas the Protein 2 formulation had a large offset between Tonset and Tagg. In a follow-up study (not presented at the 
conference), two mAbs formulated in the same buffer and pH conditions showed different light scattering profiles. The mAb 
with similar Tonset and Tagg aggregated at lower temperatures, whereas the mAb with larger differential between Tonset and 
Tagg showed minimal change in light scattering intensity, suggesting a lower propensity for aggregates induced by protein 
unfolding. 

In order to understand the effect of temperature on aggregate formation, both mAbs were stressed at 30°C and 40°C 
for six and four weeks, respectively. As a comparison, both mAbs were also stored at 5°C for nine months. At 30°C and 
40°C stress conditions, Protein 1 formed a large amount of multimers. However, these multimers were not observed after 
nine month’s storage at 5°C, which indicated that the degradation mechanisms at 30°C and 40°C were not relevant to 
5°C storage. Protein 2 exhibited a different behavior than Protein 1, which is expected because of the large differential 
between Tonset and Tagg. The dimers formed post 40°C stress corresponded to those formed after nine months at 5°C. Post 
30°C stress, the degradation products formed were within assay variability. For Protein 2, a higher stress temperature 
was appropriate and allowed for measurable aggregation to occur on more accelerated timescales. The differences 
in degradation products post-accelerated stress and the offsets between Tonset and Tagg for Protein 1 and Protein 2 
suggested that Protein 2 has stabilizing colloidal forces that limit aggregation of the protein even when unfolded.

We are investigating further how to leverage the dissociation constant (Kd), Tonset , and Tagg to design appropriate 
formulation spaces in terms of protein concentration, ionic strength, and pH. In the future, formulations could 
be characterized by these parameters to identify shelf-life-limiting risks early. The combination of SLS and DSC 
measurements can provide additional information on the impact of unfolding on physical stability and better inform 
stress temperature decisions. Combining this data with parameters from other techniques such as dynamic light 
scattering (DLS) can also be useful in creating better predictive models for understanding thermal stress and shelf-life 
stability of mAbs.
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Evaluation of miniaturized containers for formulation 
development
High-throughput screening has been successfully employed in many pharmaceutical development areas such as 
cell culture and protein purification. In spite of this, there has been limited implementation of this technology in the 
formulation development process. One of the major concerns voiced by many formulation groups is that changes 
in the materials of contact during stability testing will result in different degradation mechanisms than observed 
in final drug product configurations. However, the standard 2CC glass vials used in the current formulation 
development screens are difficult to handle by using typical laboratory liquid handling systems. The 2CC glass vials 
are also relatively large, require a high filling volume, and have low recovery volumes due to the internal geometry. 
Therefore, a miniaturized automation-friendly container that shows degradation patterns consistent with those 
observed in drug product containers (2CC glass vials) must be identified prior to applying high-throughput 
technology in the area of formulation development. 

In this study, different types of automation-friendly glass and plastic vials were evaluated with the standard 2CC glass 
vials. Figure 1 displays all the vials that were used in this study. Two predefined formulations of a mAb (Protein 3) 
were prepared and filled at 50% of the capacity of each container. One formulation (worst case) was known to result 
in oxidative degradation of Protein 3 under accelerated thermal stress. This formulation had also previously shown 
differential stability patterns in glass vials and polypropylene (PP) microplates. The second formulation (negative 
control) does not cause oxidative degradation and had shown consistent degradation patterns of Protein 3 in both 
glass vials and PP microplates. All containers were incubated at 40°C for four weeks to compare protein degradation 
patterns between 2CC glass vials and all other types of containers.

After four weeks of thermal stress at 40°C, peptide mapping by liquid chromatography-mass spectrometry (LC/MS) was 
performed for all the samples to detect protein oxidation. The data are summarized in Table 1. As the data shows, 
the oxidation level is relatively low for all the containers filled with negative control samples. For the worst-case 
formulation, the plastic containers (Vials 4, 5, and 6) show relatively low oxidation levels, which are comparable with 
the negative controls. Concerningly, all glass vials showed different levels of oxidation, with none matching the 
standard 2CC glass vial configuration.

As the data shows from this study, there is a significant difference between the standard 2CC glass vial and other 
glass and plastic vials in terms of protein oxidation under thermal stressed condition. Further experimentation 
demonstrated that observed oxidation patterns were likely due to leachables from the glass and that expected 
oxidation could be triggered in some plastics by spiking in water or buffer exposed to glass at elevated temperatures. 
Further studies will be needed to characterize the active glass leachable and enable representative miniaturized 
stability testing.

1 2 3 4 5 6

Fig 1. Different types of glass and plastic vials. 1: Standard 2CC, 2: high recovery glass, 3: glass 2,  
4: PP 600 μL cryo, 5: low-bind PP flip-top, 6: PP 2 mL cryo.

Table 1. Protein oxidation in all containers after 4 weeks at 40°C

Sample Oxidation (%)

Negative control T0 2

1 (standard 2CC glass vial) 2.6

2 (high recovery glass) 2.6

3 (glass 2) 2.7

4 (PP 600 μL cryo) 2.7

5 (low-bind PP flip-top) 2.6

6 (PP 2 mL cryo) 3.9

Worst case formulation T0 1.9

1 (standard 2CC glass vial) 35.5

2 (high recovery glass) 15.6

3 (glass 2) 17.1

4 (PP 600 μL cryo) 5.1

5 (low-bind PP flip-top) 5

6 (PP 2 mL cryo) 6.5
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Introduction
High-throughput screening (HTS) methods have become increasingly utilized in biopharmaceutical process development 
to meet the demands of accelerated timelines and novel molecule formats. In particular, purification process development 
groups have predominately used two HTS techniques for chromatography process development: 96-well batch binding 
screens [1, 2, 3] and parallelized mini-chromatography columns (RoboColumn units) [3, 4, 5]. These high-throughput 
techniques are frequently used in chromatography development workflows [2, 4], and preliminary studies have shown the 
potential of utilizing HTS techniques in process validation and characterization [5, 6]. Of these two techniques, RoboColumn 
units are most similar to bench-scale columns, due to their dynamic mode of operation and have been identified as most 
comparable and scalable to conventional chromatography [6]. 

While the scale comparability of RoboColumn units to bench-scale chromatography has previously been assessed [4, 5, 6],  
an understanding of how scale offsets vary with process parameters has yet to be systematically explored. In this work, 
we demonstrate how scale offsets for monoclonal antibody (mAb) yield, pool volume, and impurity clearance will vary with 
process parameters for two model bind-and-step-elute chromatography processes: cation exchange (CEX) chromatography 
and Protein A chromatography. Specifically, we investigated the effect of CEX load density and elution buffer strength on 
yield, pool volume, and aggregate clearance, and assessed the effect of Protein A wash buffer strength and wash phase 
duration on host cell protein (HCP) clearance. We propose that the observed scale offsets are primarily driven by an 
exacerbation of peak broadening at RoboColumn scale, which is a result of RoboColumn geometry [4]. By understanding 
how scale offsets vary with process parameters, we can enable better prediction of bench-scale column performance and 
utilization of the RoboColumn format as a scale-down model in process characterization studies.

Column chromatography
Miniaturized, packed-bed chromatography columns (OPUS™ RoboColumn, Repligen) with a 1 cm inner diameter and 3 cm  
bed height, run with Tecan Freedom EVO robotic liquid handlers, were used for all studies. Packed-bed, bench-scale 
chromatography was performed on 0.66 to 1 cm inner diameter columns with a bed height of 20 cm. Identical CEX and 
Protein A chromatography experiments were performed at RoboColumn and bench scale using 3 mAb feedstocks; and  
yield, pool volume, and impurity clearance were compared. Load and pool fractions were measured for protein concentration 
by UV absorption, aggregates by size exclusion chromatography (SEC)-HPLC, and phospholipase B-like 2 (PLBL2) using 
a multi-product ELISA. 
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Bind-and-step-elute chromatography scale comparability
CEX chromatography was used as a representative bind-and-step-elute (no pre-elution wash) mAb chromatography 
process to determine how load density (50–100 g/Lr) and elution buffer strength (140–375 mM NaOAc, pH 5.5) affect 
RoboColumn scale offsets. Figure 1 shows CEX elution chromatogram overlays at each scale and illustrates that at 50 g/Lr  
load density, RoboColumn peak broadening is exacerbated by weaker elution buffers. As a result, the enhanced peak 
broadening at RoboColumn scale results in larger pool volumes with a fixed 2.0 OD end-pooling cut-off.

Antibody yield, pool volume, and aggregates were measured in the CEX pools at both scales and the results were compared 
in the residual plots shown in Figure 2. First, we observe that RoboColumn yields are generally predictive of bench-scale 
yields, with the exception of three weak elution buffer cases under-predicting bench-scale yields by > 10%. For these weak 
elution buffers, peak broadening will be exacerbated on RoboColumn units, as demonstrated in Figure 1. RoboColumn 
yields are lost to peak broadening because the mass distribution prior to the end pooling cutoff for the tailing RoboColumn 
elution peak will be significantly less than that of the bench-scale elution peak. Secondly, we observe larger RoboColumn 
pool volumes, which can also be attributed to the additional peak broadening on the RoboColumn format. However, we do 
not see an observable trend for pool volume differences as observed in Figure 1. We suspect that load densities greater 
than 50 g/Lr confound the trend, as higher protein concentrations lead to higher viscosities on the column, which can result 
in further peak broadening. Finally, Figure 2 shows that aggregate clearance is predicted within experimental variability at 
RoboColumn scale (± 0.4%) across a wide range of operating parameters. We hypothesize that this is the case because  
a step-elution will separate aggregate from monomer by differences in partitioning on the resin and this partitioning  
should not be affected by chromatography scale. 

Fig 1. CEX elution phase overlays and pool volume differences at RoboColumn and bench scale for weak (A) to strong (C) elution buffers at 50 g/Lr load density. 

∆ = 1 CV

∆ = 0 CV

2.0 OD

2.0 OD

2.0 OD

∆ = 3.5 CV

Elution: 175 mM NaOAc, pH 5.5

Bench scale

RoboColumn scale

15

10

O
D

Elution phase duration (CV)

5

0
0 5 10 15

15

10

O
D

Elution phase duration (CV)

5

0
0 5 10 15

15

10

O
D

Elution phase duration (CV)

5

0
0 5 10 15

Elution: 260 mM NaOAc, pH 5.5

Elution: 310 mM NaOAc, pH 5.5

∆ = 1 CV

∆ = 0 CV

2.0 OD

2.0 OD

2.0 OD

∆ = 3.5 CV

Elution: 175 mM NaOAc, pH 5.5

Bench scale

RoboColumn scale

15

10

O
D

Elution phase duration (CV)

5

0
0 5 10 15

15

10

O
D

Elution phase duration (CV)

5

0
0 5 10 15

15

10

O
D

Elution phase duration (CV)

5

0
0 5 10 15

Elution: 260 mM NaOAc, pH 5.5

Elution: 310 mM NaOAc, pH 5.5

(A) (B) (C)

60



%
 y

ie
ld

 d
iff

er
en

ce
(R

ob
oC

ol
um

n-
be

nc
h)

-20

-10

0

10

20

50 60 70 80 90

Bench-scale yield (%)

Yield residuals

P
oo

l v
ol

um
e 

di
ff

er
en

ce
(R

ob
oC

ol
um

n-
be

nc
h)

-4

-2

0

2

4

2 4 6 8 10 12

Bench-scale pool volume (CV)

Pool volume residuals

%
 a

gg
re

ga
te

 d
iff

er
en

ce
(R

ob
oC

ol
um

n-
be

nc
h)

-0.4

-0.2

0

0.2

0.4

0 1 2 3 4 5

Bench-scale HMWS (%)

Aggregate residuals

Bind-wash-step-elute chromatography scale comparability
Protein A chromatography was used as a representative bind-and-step-elute process to assess how wash process 
parameters affect RoboColumn scale offsets. Specifically, we probed the effect of varying concentration of salt 
species A from 0 to 1000 mM and wash phase duration (0–8 column volumes) on PLBL2 clearance. The data is 
summarized in Figure 3 and show that PLBL2 in mAb Protein A pools is reduced as wash buffer strength (salt 
concentration) and phase duration increase. Additionally, Figure 3 illustrates that RoboColumn Protein A pools 
will have higher [PLBL2] than corresponding bench-scale Protein A pools. The difference in PLBL2 between scales 
decreases with wash buffer strength and decreases, then plateaus, with wash buffer phase duration. Thus, we can 
expect that impurity clearance by wash phases on RoboColumn units will be decreased relative to bench-scale 
clearance. This offset will decrease as wash buffer strength and phase duration increase. 

We hypothesize that the wash phase impurity offset can also be attributed to exacerbated peak broadening on 
RoboColumn units. Similar to how mAb peak broadening increases with weaker elution buffer, as illustrated in 
Figure 1, HCP peak broadening will increase with weaker wash buffers. With an increase in HCP peak broadening 
and a fixed wash duration, RoboColumn units will clear less HCP in the wash phase. As HCP peak broadening is 
decreased with stronger wash buffers, the difference in HCP clearance will decrease, as illustrated in Figure 3.
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Fig 2. Absolute difference between RoboColumn CEX pools and bench-scale CEX pools for yield, pool volume, and aggregates (high molecular weight species [HMWS]) for two mAbs.
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Fig 3. The Protein A pool [PLBL2] for RoboColumn and bench-scale formats, and absolute difference in [PLBL2] for varying wash buffer salt concentration 
and phase duration.

Summary
Overall, RoboColumn to bench-scale offsets are dependent of process parameters and driven by exacerbated peak 
broadening on the RoboColumn format. For bind-and-step-elute processes, yields across scales were found to be 
comparable except for very weak elution buffers, and pool volumes were found to be larger at RoboColumn scale. 
Impurity separation scale-comparability was found to be dependent of the mechanism of separation. Impurities 
separated by a step-elution were found to be comparable across all process parameters, while the scale offset of 
impurities separated by a wash phase was dependent of wash process parameters. By understanding RoboColumn scale 
comparability as a function of varying process parameters, we can justify scale offsets that would be observed in future 
RoboColumn scale-down model qualification or process characterization studies by applying an empirically determined, 
quantitative scale offset within a practically applicable process parameter range.
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Introduction
High-throughput screening (HTS) and miniaturization are well-established strategies for streamlining downstream 
process development. During routine development, utilization of HTS technologies across the entire downstream 
process can enhance overall process understanding and identification of process design gaps. During early phase 
development, HTS methods can facilitate development of multiple molecules in parallel and inform efficient, 
phase-appropriate workstreams. The present work describes a method for integrated downstream process 
development in a single 96-well filter plate experiment. The plate design allows for data collection on the colloidal, 
chemical, and thermal stability of a product over the full range of downstream solution conditions, including  
low-pH viral inactivation. Additionally, in the same plate, batch binding studies were performed to investigate 
protein-adsorbent interactions over five types of chromatographic resins. 

Materials and methods
The method was implemented using a 96-well filter plate with 50 µL resin in each well. The entire method, 
including load and buffer preparation, was automated on a robotic liquid handling system. After solution and 
load preparation, the plate was loaded and incubated for 60 min, followed by recovery of the unbound material. 
Next, the resins in the wells were incubated with either a strip solution or elution buffer, depending on the mode 
of chromatography, followed by collection of the stripped or eluted material. The load, unbound, elution, and strip 
samples were analyzed for protein concentration and target impurities such as high-molecular weight (HMW) 
entities, host cell protein (HCP), or fragments. Resins evaluated in the 96-well plate include protein A affinity and 
cation exchange (CEX) chromatography in bind-elute mode and anion exchange (AEX), hydrophobic interaction 
(HIC), and multimodal (MMC) chromatography in flow-through (FT) mode. Figure 1 presents the plate configuration 
and Table 1 shows the operational conditions tested. 
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Fig 1. The 96-well filter plate configuration. The colors indicate areas of the plate dedicated to specific resins 
(protein A affinity: orange, AEX: yellow, HIC: green, MMC: dark grey, CEX resin 1: purple and light grey, and CEX 
resin 2: dark blue and light grey). 

Table 1. Operational conditions and outputs for single 96-well filter plate experiment

Resin pH
Salt  

(mM) Mode
Loading  

(g/Lr) Wells Output

Protein A 3.3–3.8 0 BE1 20 6
Recovery, HMW,  
low pH stability

CEX 1
5 0–100 Binding ≥ 80 3 Static capacity

5 0–6503 BE 20 9 Recovery, purity

CEX 2
5 0–100 Binding ≥ 80 3 Static capacity

5 0–5003 BE 20 9 Recovery, purity

AEX 6–8 33–200 FT2 5 18 Recovery, purity, 
impurity removal, 
partition coefficient 
(Kp), solution 
stability (load)

HIC 5–8 25–400 FT 5 24

MMC 5–8 25–400 FT 5 24

1 BE = Bind-elute
2 FT = Flow-through
3  Binding at 0 mM salt followed by stepwise elution to 650 mM and 500 mM salt over nine wells for CEX resin 1 

and CEX resin 2, respectively. 64



Solution stability
Significant insight into potential operating conditions can be gained by evaluating the solution stability of molecules. 
Colloidal, chemical, and thermal stability across the potential solution conditions in the downstream process was used 
to identify the operating space where the product is most stable and to identify conditions that minimize yield loss and 
aggregation. Figure 2 compares the colloidal stability by light scattering and the chemical stability by size exclusion 
chromatography (SEC) for two different monoclonal antibodies (mAbs). As shown in this example, mAb 1 is relatively 
stable with respect to precipitation and aggregation across the range of downstream operating conditions evaluated. 
Alternatively, mAb 2 precipitates at high pH and low ionic strength and displays significant aggregation at high pH and 
high salt strength, indicating that these solution conditions should be avoided during downstream process design.  
Figure 3 highlights the difference in thermal stability by differential scanning fluorimetry (DSF) for an IgG1 mAb (mAb 3) 
and a Fc-fusion protein. As shown in this example, mAb 3 exhibits typical thermal stability for an IgG1 along with greater 
thermal stability as the pH increases. The Fc-fusion protein, in addition to an overall lower melting temperature (Tm), 
exhibits a decrease in thermal stability with an increase in pH and salt strength.
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Fig 3. Thermal stability determined by DSF for the range of downstream process conditions 
evaluated for (A) mAb 3 and (B) Fc-fusion protein 1. 

Fig 2. Comparison of solution stability for two mAbs for the range of downstream process conditions 
evaluated. (A) Turbidity and (B) HMW for mAb 1. (C) Turbidity and (D) HMW for mAb 2.
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Batch binding
The 96-well plate was used to perform batch binding studies to investigate protein-adsorbent interactions over five types 
of chromatographic resins across a wide range of pH and salt conditions. This format was used to screen protein A elution 
conditions; evaluate static resin capacity, gradient elution strength, and selectivity for two cation exchange resins; and 
evaluate selectivity between product and impurities for three different resins operated in flow-through mode for a single 
molecule. Figure 4 presents an example of the data obtained in the single plate experiment. These data can be used to 
estimate protein A recovery and molecule sensitivity to low-pH viral inactivation; select a CEX resin based on elution 
strength, recovery and selectivity for impurities; and, finally, identify the optimal flow-through resin and conditions 
for operation. The integrated plate-based method presented herein provides insight into setpoints for individual unit 
operations as well as sensitivity to operating ranges. In addition, mode pairing may be employed to select resins and 
operating conditions across the entire process (Fig 5).
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Fig 4. Example of data generated during a single batch binding experiment. (A) Protein A recovery versus 
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The presented method enables an ultrarapid development cycle, wherein process 
development scientists determine molecule manufacturability and process operating 
ranges for an entire downstream process in a single plate-based experiment. The 
resources required for this method are approximately 100 mg of protein and one day 
of run time. In contrast, to generate comparable data using traditional bench-scale 
chromatography systems and scale-down size columns could require five to eight 
weeks of run time and in excess of 50 g of protein, depending on assumptions. When 
combined with miniaturized, automated RoboColumn chromatography to verify 
operating conditions, the presented method integrates into a phase-appropriate 
development strategy that can dramatically increase efficiency of the downstream 
development cycle without sacrificing process understanding and robustness.
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Introduction
The robustness and consistency of a chromatography step can be described by the impact of variability in the feed 
material, critical process parameters, and critical raw materials together with the ability of the process control strategy 
to mitigate such variability without compromising quality.

According to the ICH guideline Q8, the manufacturer of biologics needs to understand all critical attributes of raw 
materials and how to control the variability to ensure consistent supplies. The focus of quality by design (QbD) efforts 
during the last decade has often been centered to variability in the manufacturing process itself, with limited insight into 
raw material variability. It is often not until commercial manufacturing where the full impact of raw material variability 
is experienced, often without major issues, although sometimes resulting in lengthy manufacturing investigations and 
possibly batch rejection. Here, we present a roadmap and working approach for how supply chain transparency and 
collaboration between manufacturer and supplier can enable process development regarding raw material variability and 
support continued process verification.

Need for information and tools
When resins are developed, a methodology based on an established intended use, design for six sigma (DfSS), and 
structure-function relationships is used to design for consistent performance. This methodology aligns well with 
the principles and processes of QbD (Fig 1 and 2). For a purification process, with intended use, molecule, or process 
conditions that differs significantly from the model used in the resin development, the structure-function relationships 
might no longer apply. Hence, the impact of raw material variability can be unknown. Raw material variability can be 
assessed in early stage, but is often first addressed during late stage development, in preparation for clinical phase III 
trials, and performed after optimization and confirmation runs in scale-down models. Typically, a risk assessment is 
performed and, depending on the outcome, certain attributes may be characterized. Prior experience and reference 
materials may be used, but there is a clear need for tools and information as well as collaboration in order to enable  
a proper risk assessment of robustness as well as characterization if needed.

Fig 1. The product development methodology at Cytiva mirrors principles of QbD, relating productivity or 
process economy to functional and structural properties as well as process parameters. DBC = dynamic 
binding capacity.
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Tools to understand and mitigate for raw material variability
To efficiently assess resin attributes and generate process understanding, the following tools are suggested (Fig 3): 

a) Resin fact sheets based on shared knowledge of resin design, process development, and manufacturing experience 
(Fig 4).

b) Reference material describing how different control strategies might worsen or decrease process sensitivity, for example, 
how different pool collection criteria or elution strategies can impact the sensitivity to variability in ionic capacity. 

c) Resin variability sample sets to be utilized in case of risk assessment that recommends characterization.

d) A methodology for residual risk management.

Fig 2. Example of a design of experiment setup for a structure-function relationship study as part of resin development. The study of variability in process 
parameters and resin parameters and their direct and interaction effects on response factors enables deeper process understanding.
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Resin X
Resin X is a strong cation exchange chromatography resin developed for polishing of monoclonal anitbodies (mAbs) and 
other biomolecules.

Fig 4. A hypothetical example of a fact sheet for Resin X (non-existing product). (A) Development and manufacture experience in different hypothetical processes. (B) Historical process exposure to resin variability for 
ligand density (left) and particle size (right), and (C) joint assessment of which resin attributes that might impact on performance, leading to a suggested characterization program.
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Residual risk management
Raw material monitoring is a tool to utilize for residual risks, for example, when attributes cannot be fully studied during 
process development. If particle size was not included in the process characterization design, principal component 
analysis of particle size distribution can be used as a tool to manage residual risk, for example, to compare lots used in 
the purification process compared with the manufacturing envelope for Resin X (Fig 5).

Discussion and conclusions
Variability in resin attributes can impact process performance and product quality. The presented approach, with 
tools and information based on shared knowledge, enables increased process understanding and robust, scientifically 
understood processes. The result can be higher process consistency and productivity. Some of the tools are applicable 
for both early and late stage process development.

Fig 5. Resin lots (green) in relation to resin manufacturing envelope for Resin X. (A) Risk assessment of a new 
resin lot (orange) concludes that the risk of process impact is low. (B) Indication that a new resin lot  (orange) 
could be used to expand the process envelope through scale-down testing to reduce the residual risk.
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Introduction
The most efficient chromatography platforms currently available for scaled-down high-throughput process 
development (HTPD) exist in a 96-well plate format (e.g., PreDictor plates from Cytiva). These can be invaluable for 
automated early screening work, enabling a large array of conditions to be scouted with reduced material and time 
costs [1], However, the requirement for specialised liquid handling equipment and robust bridging experiments to 
translate to process scale can be considered a disadvantage.

Here, two high-throughput research-scale devices are presented. These devices are based on established protein A 
and ion exchange ligands, immobilised onto high-flow rate cellulose fiber membrane absorbent units [2], We explored 
laboratory-scale protein A functionalized membrane chromatography devices capable of purifying ~ 10 mg of antibody  
in a primary capture mode in a 2 min chromatography cycle, with capacity being independent of flow rate (Fig 1).

Figure 2 displays how operating at high flow rates and in smaller scales allows full process development to be carried 
out quickly, with sufficient material generated to perform material characterization studies. 

The membrane adsorbent material is designed to operate in a rapid cycling mode, with each unit capable of being 
cycled > 100 times in a single working shift. The units currently scale up to 100 mL of membrane. Larger units are 
being developed to handle mAb quantities for large industrial processes.

Two case studies are presented here to demonstrate the complementary attributes of the two formats: 0.4 mL 
laboratory-scale and 60 µL 96-well plate. The first covers the process development of a primary capture step on an 
industrially relevant mAb, varying process conditions such as the pH and concentration of elution and post-load wash 
buffers as well as flow rate. The second illustrates the integration of the capture step into upstream development by 
using the robust cellulose fiber matrix to handle centrifuged material from Ambr™ 15 bioreactors to obtain samples  
for analysis during a cell line selection screen.
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Case study 1. High-throughput buffer screening for a Protein A step
An initial set of design of experiments (DoE) studies, examining which factors have the most influence upon the elution 
profile including buffer strength, pH, and flow rate during elution, determined that concentration of elution buffer had the  
most significant effect. A full investigation of effect of buffer strength on elution profile, including interaction with post-load 
wash buffers, was carried out with a monoclonal antibody (mAb 1) supplied by GlaxoSmithKline (GSK), Gunnels Wood Road, 
Stevenage, Herts, SG1 2NY UK. 

Materials
• ÄKTA avant 150, using UNICORN™ 7.0

• Cellulose fiber membrane functionalized with protein A, 
0.4 mL membrane volume

• Binding buffer: 20 mM Tris, pH 7.5 + 150 mM NaCl

• Post-load wash buffer (Table 1)

• Elution buffer (Table 1)

• mAb 1, post-protein A purified mAb, made up to 1 g/L  
in binding buffer

Method
Chromatography runs were performed on Cytiva’s ÄKTA avant 150 at a flow rate of 15 mL/min, 37.5 MV/min, 1.6 s residence 
time (for equilibration, loading, post-load washing, and elution on a 0.4 mL membrane), with each full cycle taking 2 min. 
Buffers for post-load wash and elution were varied as shown in Table 1, using two membrane volumes of each buffer.

The load for each run was 4 mL of mAb 1 at 1 g/L, with each combination of wash and elution buffers run in duplicate. 
Results were reported from the integration of the chromatograms using the automated integration feature of the 
UNICORN 7.0 software, with peak area (mAU/mL) values comparing recovery. 

Table 1. Post-load wash (PLW) and elution buffers used in the study

PLW Buffer Elution Buffer

1 20 mM Tris 150 mM, NaCl pH 7.5 A 30 mM NaOAc, pH 3.5

2 10 mM Tris, pH 7.5 B 50 mM NaOAc, pH 3.5

3 20 mM Tris, pH 7.5 C 100 mM NaOAc, pH 3.5

4 50 mM Tris, pH 7.5 D 150 mM NaOAc, pH 3.5

5 50 mM citrate, pH 5.5 E 30 mM acetic acid, pH 3.2

6 100 mM citrate, pH 5.5 F 50 mM acetic acid, pH 3.1

7 50 mM NaOAc, pH 5.0 G 100 mM acetic acid, pH 2.8

8 100 mM NaOAc, pH 5.0 H 150 mM acetic acid, pH 2.7 75



Results
Results are reported in Table 2. Percentage recovery is defined by the area of the 
elution peak, and the peak width in column volumes gives us the pool volume of 
the eluate.

The speed of the pH transition is determined by the relative buffer strength of 
the wash and elution buffers, with the fastest transitions giving the sharpest 
peaks. The strongest buffers give the smallest peak width for elution. However, 
when considering post-protein A process steps, for example, post-viral hold, 
cation exchange (CEX), and anion exchange (AEX) chromatography, it is worth 
noting that the higher buffer strength eluent pool will require a greater volume 
of titration buffer to raise the pH, thus resulting in a lower overall eluent pool 
concentration. The data also appears to show that acetic acid is a less favorable 
elution buffer, especially at lower concentrations, as the recovery is significantly 
lower, indicating that the required pH for optimal elution is not reached. 

The low pH intermediate wash steps speed up pH transition as expected, but in 
the case of the higher molarity buffers, it appears that the wash is starting to elute 
material, adversely affecting recovery. 

The most favorable combination for mAb 1 appears to be 50 mM sodium acetate 
at pH 5.5 for wash, with a 100 mM sodium acetate elution buffer at pH 3.5. These 
conditions gave a recovery of 89%, with a peak width of 3.8 column volumes 
(CV). Duplicate runs of the 64 experimental conditions were completed in 4.5 h, 
demonstrating the power of this tool for HTPD and highlighting key conditions for 
further process development optimization with the membrane adsorbent PD 
units developed for scalable industrial performance.

Table 2. Elution peak width and percentage recovery for mAb 1 (128 runs performed in < 1 day on an ÄKTA avant system)

Peak width (CV)

20 mM Tris, 
150 mM 

NaCl,  
pH 7.5

10 mM Tris  
pH 7.5

20 mM Tris  
pH 7.5

50 mM Tris  
pH 7.5

50 mM 
citrate  
pH 5.5

100 mM 
citrate  
pH 5.0

50 mM 
NaOAc  
 pH 5.0

100 mM 
NaOAc 
 pH 5.0

1 2 3 4 5 6 7 8

30 mM NaOAc pH 3.5 A 6.6 4.1 6.5 6.5 3.6 3.1 4.2 3.3

50 mM NaOAc pH 3.5 B 5.9 4.9 6.4 6.4 3.8 3.8 3.7 6.3

100 mM NaOAc pH 3.5 C 5.5 4.4 5.0 5.0 3.8 3.7 3.8 3.8

150 mM NaOAc pH 3.5 D 4.5 4.3 3.7 3.7 3.8 3.7 3.8 3.8

30 mM acetic acid pH 3.2 E — 3.0 2.9 4.1 2.4 2.8 2.2 1.8

50 mM acetic acid pH 3.1 F — 4.0 3.7 3.5 3.8 2.9 2.9 2.9

100 mM acetic acid pH 2.8 G 5.5 5.1 4.9 5.0 5.1 4.5 4.9 4.3

150 mM acetic acid pH 2.7 H 5.9 5.3 5.2 5.2 5.7 5.2 5.5 5.1

Recovery (%)

20 mM Tris, 
150 mM 

NaCl,  
pH 7.5

10 mM Tris  
pH 7.5

20 mM Tris 
 pH 7.5

50 mM Tris  
pH 5.5

50 mM 
citrate  
pH 5.5

100 mM 
citrate  
pH 5.0

50 mM 
NaOAc  
 pH 5.0

100 mM 
NaOAc  
pH 5.0

1 2 3 4 5 6 7 8

30 mM NaOAc pH 3.5 A 71.2 68.1 59.4 55.4 57.4 45.0 67.9 44.7

50 mM NaOAc pH 3.5 B 85.0 97.0 92.6 100.0 77.9 72.7 80.4 82.2

100 mM NaOAc pH 3.5 C 89.1 97.8 95.6 91.3 86.1 85.6 89.0 81.5

150 mM NaOAc pH 3.5 D 89.1 96.5 96.6 89.2 85.8 87.9 89.3 80.4

30 mM acetic acid pH 3.2 E — 46.6 54.4 76.9 33.6 51.6 27.8 27.4

50 mM acetic acid pH 3.1 F — 63.0 71.6 80.4 56.5 40.4 46.3 37.1

100 mM acetic acid pH 2.8 G 93.3 92.9 93.9 96.5 82.8 70.9 77.3 69.8

150 mM acetic acid pH 2.7 H 91.2 96.5 100.0 98.8 91.6 82.1 87.4 82.7
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Case study 2. Accelerating cell line development through liquid 
handling robotics
In some alternative applications, the rapid recycling of HPTD units might be inappropriate due to the possibility of  
cross-contamination. In this case study, we demonstrate the rapid purification of unfiltered centrifuged supernatant from 
48× Ambr 15 bioreactors via a high-throughput protein A 96-well screening plate on a liquid handling platform (Tecan).

The objective was to generate purified IgG suitable for evaluating the performance of each bioreactor, to facilitate cell 
line selection. 

Materials
• Freedom EVO 150 liquid handling platform with integrated Te-Chrom™ capability (Tecan)

• Cellulose fiber membrane functionalized with protein A, 60 µL membrane volume, 96-well plate

• Platform buffers for standard GSK protein A chromatography process

• 48× Ambr 15 bioreactors (Sartorius)

• Sorvall™ Legend RT Bench-top centrifuge (Thermo Scientific)

Method
As depicted in Figure 3, the bioreactors were benchtop-centrifuged in a bespoke 3D printed carrier, and then transferred 
to the liquid handling deck where supernatant from each individual bioreactor was aspirated via liquid handling and 
directly loaded in parallel sets of 8 individual chambers of the 96-well plate cellulose fiber device. Each well was washed, 
and then eluted into a single fraction with protein concentration measured and titrated to neutral pH for subsequent 
assays.

Results 
Samples from the 48× Ambr 15 bioreactor supernatants were purified, with concentrations determined and pH adjusted in 
under 2 h, with 500–600 μg IgG per sample collected in a 200 μL pool. With the single-use modality of the high throughput 
plate format, no filtration was required prior to the loading of sample onto the membranes; increased purified IgG could 
be generated by cycling the units several times. The work demonstrates a fully integrated automated platform operating 
in under 2 h, enabled by the performance of the cellulose fiber device.

Centrifuge
Ambr 15

bioreactors
Equilibration

Install on liquid 
handling platform

Remove
supernatant

Load

Post-load
wash

pH
adjustment +
spectroscopic

analysis

Elution
phase

CIP/
Storage Regeneration

Fig 3. Process flow diagram for purification of mAb from Ambr 15 bioreactors using a liquid handler from Tecan.
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Conclusion
We have demonstrated the utility of cellulose fiber devices in different HTPD applications. Very small quantities of 
adsorbent can yield a great deal of data and process development understanding. This is due to the immediate mass 
transfer observed with the membrane adsorbent, meaning less complexity when scaling up. The scalability criterion of 
the device format means that methods can be easily scaled.

Small, scalable units enable a range of process parameters to be explored with minimal feed requirements. Units can 
be cycled up to 200 times to add confidence to repeats and adsorbent lifetime understanding, as well as produce 
meaningful amounts of material for further study. All units can be run on standard ÄKTA systems. The alternative 96-well 
format can be used where carryover could be an issue, for example, in cell line selection, foulant material, static studies 
(long buffer holds, base stability, etc.). The 96-well format fits seamlessly into Te-Chrom-enabled Tecan liquid handling 
platforms.
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Maturing digital manufacturing concepts are beginning to change the way we see biopharmaceutical manufacturing. 
Keys to this initiative include de-siloing data, predictive simulations, model reference adaptive control, dynamic 
enterprise control algorithms, and process automation. Digital biomanufacturing (DB) is part of an evolution and one 
further step in the application of technologies such as multiplexed reactor monitoring, internet of things (IoT), and 
cloud computing. 

Powerful algorithms, along with fully automated, modular workflows built up by micro-services, employ disparate 
data from such sources as new sensors and at-line analytics, along with such other high-value information as 
process history records and genome based metabolic networks. The emerging technologies are now providing both 
a quantitative understanding of cell physiology and advanced model-based control toward process development, 
operational efficiency, and business goals. Those familiar with the digital plant maturity model (DPMM) or Industry 
4.0 might know of some of the advances now being addressed. 

Insilico
Discovery™

Insilico
Designer™

Insilico
Controller™

Bioprocess
modeling

and simulation

Process
analysis

Metabolic
analysis

Feed
control

Medium
design

Data
integration

Insilico
Inspector™

UNICORN
software

At-line and online
data collection

Integrated network and cloud platforms

Fig 1. Intelligent software applications in digitalized process development. A prerequisite for making use of bioprocess data are data management 
systems that integrate online bioprocess data and at-line data (such as cell number and viability, metabolites, and product titer and quality). Intelligent 
software solutions check and analyze these data sets on the basis of metabolic cell and process models to either optimize the conditions for a specific 
clone and product, or to continuously improve the production platform as a whole. In the future, predictive metabolic modeling will allow for online 
preemptive process optimization and control based on reduced data sets.

Examples of this include process understanding, monitoring, and analytics; plant 
design and automation; process design and flow; embedded, distributed, or modular 
control units; as well as advances in enterprise resource planning (ERP)/manufacturing 
execution systems (MES). Predictive modeling is an integral part of this and a key 
technology to unleash the full potential of digital biomanufacturing. Supporting this 
initiative are databases built from bioprocesses operating worldwide. The potential 
consequences include world-wide connectivity, supporting past, off-line, and current 
data feeding self-learning, closed-loop enterprise control.

Bioprocess development is witnessing a maturing of intelligent software applications. 
They now employ process data in combination with metabolomics, transcriptomics, 
or proteomics data to generate individualized metabolic network models, representing 
specific host cell lines and bioprocesses (Fig 1). Such models enable predictive 
simulations as part of accelerated process development workflows (Fig 2). Moreover,  
these in silico replicas of the process are used to generate quantitative insights into  
cellular metabolism, which are taking statistical process analysis to another level,  
creating improved process understanding and correlation between process performance  
and cellular metabolism. Advanced metabolic modeling workflows, employing artificial 
intelligence can generate highly accurate predictions, while the time to generate those 
models is rapidly decreasing, finally allowing for online predictive computing (Fig 3). 
Another way to conceptualize this is as a biomanufacturing application of the learning 
digital model of an apparatus called a digital twin (Fig 4).
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Fig 2. Applications and benefits of predictive simulations for bioprocess development. (A) Paramount goals of process development are maximum product titer and improvements in product quality such as glycoform 
distribution, reduced protein truncation, and minimized antibody reduction. Predictive simulations of cells in a bioprocess reduce the experimental efforts in cell line development (engineering of host cells and expression 
vectors) and process development (medium design, optimization of feeding regimes, and adaptation of the most suitable process format) to achieve these goals. (B) Replacement of wet lab experiments by predictive 
simulations allows for compressed timelines as compared to conventional, evolutionary process design. Time savings increase with increased prediction accuracy.

Fig 3. Accuracy and efficiency of predictive modeling. (A) A metabolic network model for Chinese hamster ovary (CHO) cells was used for simulation of an antibody bioproduction process. Comparison of predicted and 
measured parameters for a training data set (blue dots) and validation data set (orange dots) revealed prediction accuracies of 73% and 78% for cell density and product titer, respectively. (B) Improved automated workflows 
and machine learning algorithms lead to a dramatic decrease in the times required for metabolic model calibration and validation, allowing for at-line predictive computing.
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+
Fig 4. The digital twin concept. Digital twins are persistent digital models of the structure and behavior of each instrument, enabling 
performance understanding, prediction, and optimization.
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