) cytiva

Mechanistic modelin of chromatography

Replace your lab experiments with computer simulations — obtain thousands of results in a few hours

Smart process development approaches

Statistical modeling Multivariate data analysis such as design of experiments (DoE)

Mechanistic modeling Computer simulation

HTPD Miniaturized and parallelized experiments

Mechanistic modeling = computer simulation of chromatograms

Differential equations describe mass transport in the column. Adsorption isotherms describe interactions with the ligands.

Typical workflow

System and column characterization

Protein chromatography experiments

Model calibration (with software)

 $1 - \varepsilon_p \partial q_i q$

 $k_{f,i} (C_i -$

 C_{salt}

 $(\partial^2 C_{p,i})$

 $-\left(\sigma+\nu\right)\cdot q\Big]^{\nu}q=C_{eq}\cdot K_{eq}$

 $\frac{\partial C_i}{\partial z} + D_{ax} \frac{\partial C_i}{\partial z^2}$

 $\frac{\partial \bar{q}_i}{\partial t} q = C_{eq} \cdot K_{eq} \left[\frac{\Lambda - (\sigma + \nu)}{C_{eq}} \right]$

 $-\varepsilon_p \frac{\partial q_i}{\partial q_i} q = C_{eq} \cdot K_{eq}$

 $(\sigma + \nu) \cdot q$ ^{ν} $\partial C_{p,i}$

 $\frac{\Lambda - (\sigma + \nu) \cdot q}{C_{calt}} \Big|^{\nu} \frac{\partial C_{p,i}}{\partial t} = D_{p,i} \left(\frac{\partial^2 C_p}{\partial r^2} \right)^{\nu}$

 $-u \overline{\partial z}$

Csalt

Model utilization (simulated experiments)

Benefits of using mechanistic modeling

- Reduces your number of experiments
- Provides easily interpreted model parameter values
- Allows extrapolation beyond the boundaries of your experiments
- Generates process understanding (quality by design, QbD)
- Facilitates tech transfer since the model can be scaled up

Accelerated process development and improved processes

Model validation

What can I use mechanistic modeling for?

- · Optimizing wash and elution conditions
- · Performing risk assessment
- Studying the influence of process variability (QbD)
- Developing design space and control strategy
- Facilitating tech transfer
- Performing a root cause analysis

How you can use mechanistic modeling throughout the drug development process

Tips to get started

- Focus on quality of data over quantity
- Make sure essential analytical support is obtained for fraction analysis
- Know your column and system parameters
- Use precalibrated columns
- Develop your modeling framework to allow for reuse
- Seek advice from experts if needed

cytiva.com

Cytiva and the Drop logo are trademarks of Life Sciences IP Holdings Corporation or an affiliate. ÄKTA is a trademark of Global Life Sciences Solutions USA LLC or an affiliate. Any other third-party trademarks are the property of their respective owners. © 2021 Cytiva For local office contact information, visit cytiva.com/contact

CY18251-29Apr21-IG

Learn more from cytiva.com/modeling

Precalibrated f(x) columns

Insights from modeling experts

Modeling software

