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Abstract

classes.

modality-agnostic bioreactors.

generation bioreactor.

The biopharma industry is experiencing multiple challenges,
such as cost pressure and the development of new product

As a result, shorter timelines, fast scale-up, and a focus on time
to market are of great importance.

In addition, process intensification, the broad use of perfusion
processes, and non-mammalian expression systems put new
requirements on designing high-performing, scalable, and

In this study, we have leveraged computational fluid dynamics
(CFD) to design and select the agitator and sparger for a next-

Further, we have used simulations to predict and minimize the
shear stress and concentration gradients in the bioreactor.

for bioreactor design and performance
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Fig 1. Outline of stages in co-development of product and CFD model.
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CFD as a tool to capture the geometry
and application of bioreactors

 (Goal of co-developing the CFD with design of new

e (Qutcome expected to improve speed to market by reducing
material consumption & personnel

 [ntention of using CFD to screen interim bioreactor design
elements (impeller, sparge, baffles)

* |mprove selection of bioreactor for cell line needs and

e Provide visualizations of bioreactor environments

* Present quantitative evidence of shear and turbulence for
understanding of process conditions

e Reduce process development/scale-up design of
experiment conditions required in wet-test

Results

CFD Phase 1: Confirmed 200 L tank

geometry and CFD A model
e Value of CFD A model fit for im

In design — can use for impeller geometry

screening

e |dentified need for additional
tuning — Phase 2
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Fig 2. CFD model from Phase 1 describing the liquid-liquid mixing.

CFD Phase 2 A+B: Confirmed 200 L system performance and CFD_, model

* CFD,, model performing for torque and k a within + 20% of empirical for final sparge and impeller chosen with acceptable exceptions

200 L bioreactor design performs to design expectations for target k a using final sparge and impeller designs

Fig 3. Bubble size analysis to assess
sparge options.
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Fig 4. Model grid size impact on gas holdup distribution.
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Fig 5. Confirmed 200 L system performance and

CFD,, model.

CFD Phase 3: CFD A model and new bioreactor performance

Kolmogorov eddy analysis

Goal:
* Kolmogorov eddy length < 62.5 pm
e Within < 5% of total volume

Early performance results:
e 200 L < 3% oftotal volume
e 2000 L < 3% oftotal volume

Fig 6. CFD model for Kolmogorov eddy
analysis. Turbulent eddies < 62.5 pm in
diameter are represented in red.
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 Validated bioreactor performance for the final geometry,
impeller, and spargers was within design ranges for
performance for shear rate and turbulence.

e Current 200 L design will scale to 2000 L future size.

Shear rate analysis

Goal:

e < 59% oftotal volume with shear
rate > 2000 s

Early performance results:
e 200L<0.0019% oftotal volume
e 2000L<0.0019% oftotal volume

Fig 7. CFD model for shear rate analysis,

here showing the velocity contours.
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Conclusions

e Thefinal CFD model was found to be extremely useful to accelerate bioreactor product development

* Bioreactor performance parameters optimized (k,a, shear rate, and turbulence) relevant to process applications

e Using 200 L and 2000 L sizes, CFD models and wet-test results confirm scalability

e CFD characterization provides deep understanding to inform design
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